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ABSTRACT

KEYWORDS chromatic symmetric function;𝑈-polynomial; integer compositions;

caterpillars; 𝐵-polynomial; caterpillars; Tutte polynomial;

quasisymmetric functions

Stanley’s Tree Isomorphism Conjecture posits that the chromatic symmetric function can

distinguish non-isomorphic trees. This conjecture is already established for caterpillars

and other subclasses of trees. We prove the conjecture’s validity for a new class of trees

that generalize proper caterpillars, thus confirming the conjecture for a broader class of

trees.

On the digraph front, we focus on an analogue of the Stanley’s Tree Isomorphism

conjecture. The 𝐵-polynomial and quasisymmetric 𝐵-function, introduced by Awan and

Bernardi, extends the widely studied Tutte polynomial and Tutte symmetric function to

digraphs. We address one of the fundamental questions concerning these digraph

invariants, which is, the determination of the classes of digraphs uniquely characterized

by them. We solve an open question originally posed by Awan and Bernardi, regarding

the identification of digraphs that result from replacing every edge of a graph with a pair

of opposite arcs. Further, we address the more challenging problem of reconstructing

digraphs using their quasisymmetric functions. In particular, we show that the

quasisymmetric 𝐵-function reconstructs partially symmetric orientations of proper

𝑞-caterpillars. As a consequence, we establish that all orientations of paths and

asymmetric proper 𝑞-caterpillars can be reconstructed from their quasisymmetric

𝐵-functions. These results enhance the pool of oriented trees distinguishable through

quasisymmetric functions.
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CHAPTER 1

INTRODUCTION

The study of graphs traces its origins to the mid-eighteenth century, initiated by L. Euler’s

investigation of the Königsberg Bridge problem. Subsequently, graph theory found

applications in various fields, including the classification of surfaces, which marked

the beginning of a new branch in mathematics known as topology. In recent years,

graph theory has become pervasive across numerous disciplines, directly and indirectly

impacting fields such as network analysis, molecular chemistry, communication networks,

and more. With the rapid development of artificial intelligence, machine learning, and

data science in various domains, the application of graph theory has emerged as a highly

sought-after area of interest.

It is natural to understand which properties of graphs are sufficient to uniquely determine

them. Equivalently, what data about the graphs distinguish one from another? A

graph invariant is a property or object associated with graphs that remains the same for

isomorphic graphs. For instance, the number of vertices, edges, connected components,

and chromatic number are a few examples of such graph invariants. Thus, we are

interested in identifying which graph invariants distinguish non-isomorphic graphs.

The study of chromatic invariants mainly revolves around the following questions.

✎ Which properties of graphs are determined by these chromatic invariants?

✎ Which classes of graphs are identifiable by these chromatic invariants?

✎ Do they distinguish non-isomorphic graphs?

✎ If non-isomorphic graphs can be distinguished by a chromatic invariant, can the
graphs be reconstructed from it?

This thesis aims to address the above questions using the invariants chromatic symmetric



function, 𝐵-polynomial and quasisymmetric 𝐵-function. These questions strongly relate

to Stanley’s tree isomorphism conjecture [41], which suggests that chromatic symmetric

function distinguishes non-isomorphic trees. The conjecture has remained open for

nearly 30 years and has been formulated in various versions for digraphs and posets. We

study the chromatic symmetric function, 𝐵-polynomial, and its quasisymmetric extension

with a focus on the tree isomorphism conjecture and its digraph analogues.

We begin with a brief history and motivation for the chromatic invariants and their

development throughout the years.

1.1 BACKGROUND

1.1.1 Four coloring of maps

In 1852, Francis Guthrie attempted to color the map of England’s counties with the

condition that neighboring counties must be assigned different colors. One of his key

observations was that four colors sufficed for coloring any map under the same conditions.

He proposed this as a conjecture, which was later famously proven true and became

known as the four-color map theorem.

𝐸1

𝐸2

𝐸3

𝐸4
𝐸5

Figure 1.1: Map coloring and its corresponding graph coloring

Every map corresponds to a graph as follows: regions are represented by the vertices,

and any two such vertices are connected by an edge if and only if the regions share a

common boundary. The coloring of the map translates to the coloring of vertices such

that adjacent vertices are assigned distinct colors (see Figure 1.1).

For a graph 𝐺 on the vertex set 𝑉 and edge set 𝐸 , a proper 𝑘-coloring is a function from

2



𝑉 to {1, 2, . . . , 𝑘} such that adjacent vertices are assigned distinct colors. A graph is said

to be planar if there exists a drawing of the graph without crossing of edges. Observing

that the graph associated with maps does not admit any crossing of edges, the four-color

theorem can be posed as follows.

Theorem 1.1 (Four-Color Theorem). Every planar graph admits a proper 4-coloring.

The first proof, presented by Kempe, relied on the notion of Kempe’s chain [46]. Later,

Tait proposed a proof using an edge-coloring formulation of the problem. However,

both Kempe’s and Tait’s proofs were eventually shown to be false, by Heawood and

Petersen, respectively [25, 20]. Nevertheless, the pursuit of the four-coloring problem

significantly contributed to the development of graph theory. Nearly a century after the

initial attempts, Appel and Haken produced a computer-aided proof, which built upon

Kempe’s chain concept and Heesch’s ideas of unavoidability and reducibility [4, 5].

1.1.2 Chromatic polynomial

In pursuit of the four-color problem, George Birkhoff introduced a graph polynomial in

1912 [10], known as the chromatic polynomial, which studies the number of colorings

of a map. For a graph 𝐺, the chromatic polynomial of the graph, denoted by 𝜒(𝑥), is

a polynomial such that for any positive integer 𝑘 , graph 𝐺 admits 𝜒(𝑘) many proper

𝑘-colorings.

It has been shown that certain properties of graphs, such as the number of edges and

connected components, can be recovered from their chromatic polynomial [39]. In [43],

Stanley showed that evaluating the chromatic polynomial of a graph at negative integers

yields the number of acyclic orientations satisfying specific properties. Particularly, the

chromatic polynomial evaluated at −1 gives the number of acyclic orientations of the

graph.

Furthermore, Greene and Zaslavsky provided a combinatorial interpretation of the

derivatives of the chromatic polynomial in terms of orientations with special sources

3



1 2 1 2

2222 1 2 1
(a) proper 2-colorings of a path

1

1

12

2

2

21

(b) proper 2-colorings of a star

Figure 1.2: Proper 2-colorings

and sinks [23]. These results highlight the diverse and extensive applications of the

chromatic polynomial and the wealth of information it provides about the graph.

In light of the information provided by chromatic polynomials, it is interesting to know

whether the graphs are uniquely determined by the chromatic polynomial. The answer

to this is affirmative for trivial cases like edgeless graphs, complete graphs, and cycles.

Since the chromatic polynomial of a graph determines the number of edges and connected

components of the graph, it also indicates whether it is a tree or not. However, all the

trees on 𝑛 vertices share the same chromatic polynomial. In fact, a graph is a tree on

𝑛 vertices if and only if the chromatic polynomial of the graph is 𝑥(𝑥 − 1)𝑛−1. In other

words, the chromatic polynomial does not distinguish between non-isomorphic trees.

Note that while the chromatic polynomial encodes quantitative information about

colorings, it may lose crucial structural details about the underlying graph. In particular,

even if the number of colorings of non-isomorphic trees is the same, the sizes of the

corresponding color classes may differ.

For example, consider the following trees: a path on 4-vertices, and a star on 4-vertices.

(a) path graph on 4 vertices (b) star graph on 4 vertices
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Each of these graphs admits exactly two proper 2-colorings, as depicted in Figure 1.2.

For a 𝑘-coloring 𝑓 , we define type of 𝑓 as the non-increasing tuple encoding the size of

its color classes. In this context, the path graph in Figure 1.2 admits two colorings of

type (2, 2), whereas the star graph has two colorings of type (3, 1). Thus, even though

each graph admits two proper 2-colorings, the size of the color classes of their colorings

are distinct. Thus, a polynomial that encodes the type of coloring would perhaps provide

a better understanding of the structure of the underlying tree.

1.2 GENERALIZATIONS OF THE CHROMATIC POLYNOMIAL

1.2.1 Symmetric function generalization

In 1995, R. Stanley introduced a symmetric function generalization of the chromatic

polynomial [41]. Let x = (𝑥1, 𝑥2, . . . ) be a list of indeterminates. Then, for a graph 𝐺,

the chromatic symmetric function is a generating function over proper colorings, defined

as:

X𝐺 B
∑︁

𝑓 : 𝑉→P
f proper

(∏
𝑥 𝑓 (𝑣)

)
,

where P is the set of positive integers. The chromatic symmetric function determines

the size of the color classes of proper colorings. Additionally, it encodes significant

information about graphs, such as girth, the number of vertex partitions into independent

sets, and the order of connected components in subgraphs [33, 41]. In particular, it has

been proved that the degree sequence and path sequence of trees (see Section 2.1.1) can

be recovered from the chromatic symmetric functions. This raises the question: does the

chromatic symmetric function distinguish all non-isomorphic graphs? Unfortunately, the

answer to this question is negative.

Stanley presented two non-isomorphic graphs with the same chromatic symmetric

functions Figure 3.1. However, he observed that non-isomorphic trees with at most 4

vertices have distinct chromatic symmetric functions. He thus raised the question of
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whether chromatic symmetric functions distinguish all trees.

Development in this direction has led to the belief that the answer to this question is

affirmative. This is commonly referred to as Stanley’s Tree Isomorphism Conjecture.

The progress on this conjecture is detailed in Section 3.1.

1.2.2 Tutte polynomial and its symmetric function generalization

R. M. Foster had observed that the chromatic polynomial satisfies the following deletion-

contraction relation:

𝜒
𝐺 (𝑥) = 𝜒𝐺\𝑒 (𝑥) − 𝜒𝐺/𝑒 (𝑥).

W. Tutte’s interest in deletion-contraction relations, particularly for counting perfect

rectangles and spanning trees of graphs, led to the development of a bivariate polynomial

known as the Tutte Polynomial [49]. This polynomial serves as a universal object

for deletion-contraction polynomials, meaning that any graph polynomial that satisfies

a deletion-contraction reduction is a specialization of the Tutte polynomial. As a

consequence, the chromatic polynomial is a specialization of the Tutte polynomial.

The Tutte polynomial is defined recursively as follows:

Definition 1.2 (Tutte Polynomial). For a graph 𝐺, its Tutte polynomial 𝑇𝐺 (𝑥, 𝑦) is

defined as

𝑇𝐺 (𝑥, 𝑦) =



1 if 𝐺 is edgeless,

𝑦𝑇𝐺\𝑒 (𝑥, 𝑦) if 𝑒 is a loop,

𝑥𝑇𝐺/𝑒 (𝑥, 𝑦) if 𝑒 is a bridge,

𝑇𝐺\𝑒 (𝑥, 𝑦) + 𝑇𝐺/𝑒 (𝑥, 𝑦) otherwise.

The chromatic polynomial of a graph can be expressed as an evaluation of the Tutte

polynomial as follows [16].

𝑇𝐺 (1 − 𝑥, 0)𝑥𝜅(𝐺) (−1) |𝑉 |−𝜅(𝐺) = 𝜒𝐺 (𝑥).
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The proof mainly follows from the inclusion-exclusion principle and the subset-sum

expansion of the Tutte polynomial (see Definition 4.1).

In 1998, R. Stanley presented the following symmetric function generalization of the

Tutte polynomial [44].

Definition 1.3 (Tutte symmetric function). For a graph 𝐺 (𝑉, 𝐸), the Tutte symmetric

function of 𝐺 is defined as

XB𝐺 (x; 𝑦) =
∑︁

𝑓 : 𝑉→P

(∏
𝑣∈𝑉

𝑥 𝑓 (𝑣)

)
(1 + 𝑦) | 𝑓 = |,

where 𝑓 = is the set of edges with monochromatic vertices under 𝑓 .

Analogous to the specialization of the chromatic polynomial from the Tutte polynomial,

the Tutte symmetric function of a graph also determines its chromatic symmetric function.

Formally, we have

XB𝐺 (x;−1) = X𝐺 .

However, when restricted to trees, the Tutte symmetric function and chromatic symmetric

function are equivalent graph invariants. That is, any two trees have the same Tutte

symmetric function if and only if they have the same chromatic symmetric functions.

Nevertheless, determining classes of graphs other than trees that can be distinguished by

their Tutte symmetric function is still an active area to explore.

In 1999, Nobel and Welsh defined a weighted-graph polynomial, called the𝑊-polynomial,

which arises from chromatic invariants of knots [36]. This polynomial is defined

recursively, similar to the Tutte-Grothendieck decomposition, but for weighted graphs.

However, we focus on the unweighted graph variant of the polynomial. In the particular

case wherein every graph can be considered as a weighted graph with all its vertices

assigned weight 1, the𝑊-polynomial is referred to as the𝑈-polynomial.

Definition 1.4 (𝑈-polynomial). For a graph 𝐺 (𝑉, 𝐸) and any edge subset 𝐹 ⊆ 𝐸 , let
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𝑎1, 𝑎2, . . . , 𝑎𝑘 be the number of vertices in the connected components of 𝐺 (𝑉, 𝐹). Then,

the𝑈-polynomial of 𝐺 is defined as

𝑈𝐺 (x; 𝑦) =
∑︁
𝐹⊆𝐸

𝑥𝑎1𝑥𝑎2 . . . 𝑥𝑎𝑘 (𝑦 − 1) |𝐹 |+𝑘−|𝑉 | .

The𝑈-polynomial of a graph𝐺 is equivalent to the Tutte symmetric function of the graph.

As a consequence, the𝑈-polynomial determines the chromatic symmetric function of

graphs, and when restricted to trees, it is equivalent to the chromatic symmetric function.

1.3 CHROMATIC INVARIANTS OF DIGRAPH AND POSETS

Analogous to the chromatic polynomial of graphs, Stanley introduced weak and strict

order polynomials for partially ordered sets that count the number of weak and strict

order-preserving colorings of the poset, respectively [42]. These polynomials have been

generalized to quasisymmetric functions as follows:

Definition 1.5 (Order quasisymmetric functions). For a partially ordered set (P, ⪯), the

weak and strict order quasisymmetric function is defined as

Γ⩾ (x) =
∑︁

𝑓 : P→P
weakly

order-preserving

(∏
𝑣∈P

𝑥 𝑓 (𝑣)

)

and

Γ> (x) =
∑︁

𝑓 : P→P
stricly

order-preserving

(∏
𝑣∈P

𝑥 𝑓 (𝑣)

)
.

The weak and strict order quasisymmetric functions are equivalent invariants.

In [40], Shareshian and Wachs defined the quasisymmetric analogue of the chromatic

symmetric function, known as the chromatic quasisymmetric function. Initially, this

was defined for labeled graphs or, equivalently, acyclic digraphs. In [17], the chromatic

quasisymmetric function was extended to digraphs, where the expansion of the function
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in various bases was studied.

Definition 1.6 (Chromatic quasisymmetric functions). For a digraph 𝐷 (𝑉, 𝐴), its

chromatic quasisymmetric function is defined as

X>
𝐷 (x; 𝑞) =

∑︁
𝑓 : 𝑉→P

proper coloring

(∏
𝑥 𝑓 (𝑣)

)
𝑞asc( 𝑓 )

where asc( 𝑓 ) is the number of arcs (𝑢, 𝑣) in 𝐷 satisfying 𝑓 (𝑢) < 𝑓 (𝑣).

In [7], Awan and Bernardi defined a digraph generalization of the Tutte polynomial, called

as 𝐵-polynomial. Furthermore, the 𝐵-polynomial of (acyclic) digraphs also determines

the order polynomials of the induced posets.

Definition 1.7 (𝐵-polynomial). For a digraph 𝐷 (𝑉, 𝐴), the 𝐵-polynomial 𝐵𝐷 (𝑥, 𝑦, 𝑧) is

a unique trivariate polynomial, such that for every positive integer 𝑘 ,

𝐵𝐷 (𝑘, 𝑦, 𝑧) =
∑︁

𝑓 :𝑉→[𝑘]
𝑦asc( 𝑓 )𝑧dsc( 𝑓 ) ,

where [𝑘] B {1, 2, . . . , 𝑘} and asc( 𝑓 ) (resp. dsc( 𝑓 )) denotes the number of arcs (𝑢, 𝑣)

in 𝐴 such that 𝑓 (𝑢) < 𝑓 (𝑣) (resp. 𝑓 (𝑢) > 𝑓 (𝑣)).

Combinatorial interpretations of evaluations of 𝐵-polynomials, generating function

formulations in terms of order polynomials and subset-sum expansion in terms of activities

of edges are explored in [7]. Further, they introduced the following quasisymmetric

generalization of the 𝐵-polynomial that extends the Tutte symmetric function to digraphs.

Definition 1.8 (Quasisymmetric 𝐵-function). For a digraph𝐷 (𝑉, 𝐴), the quasisymmetric

𝐵-function is defined as

𝐵𝐷 (x; 𝑦, 𝑧) =
∑︁

𝑓 : 𝑉→P

(∏
𝑥 𝑓 (𝑣)

)
𝑦asc( 𝑓 )𝑧dsc( 𝑓 ) . (1.1)

It is noteworthy that all the aforementioned graph polynomials and functions can be

determined from the 𝐵-polynomial and quasisymmetric 𝐵-functions, respectively. In

Figure 1.3, we illustrate the relations between the graph and digraph invariants described
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Figure 1.3: Relations among graph and digraph invariants: the invariant at the tail of an
arrow determines the invariant at its head.

in Section 1.2 and Section 1.3.

1.4 CONTENT AND OUTLINE OF THE THESIS

We present a brief overview of the content and structure of the thesis.

In this thesis, we aim to address the problem of distinguishing (and reconstructing)

trees and their orientations from the chromatic symmetric function and quasisymmetric

𝐵-functions, respectively.
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In Chapter 2, we set up the necessary notations and preliminaries.

Chapter 3 aims to prove the validity of Stanley’s tree isomorphism conjecture for a

class of trees that extend proper caterpillars. We begin with a brief description of

chromatic symmetric functions of graphs and their expansion in various bases, with a

view towards Stanley’s Tree Isomorphism Conjecture in Section 3.1. Furthermore, we

introduce a generalization of caterpillars called proper 𝑞-caterpillars (see Definition 3.7)

in Section 3.2. We show that whether a tree is a proper 𝑞-caterpillar or not can be

recognized from its chromatic symmetric function (see Proposition 3.9). In Section 3.3,

we recall the monoid of integer compositions introduced in [9, 3]. This monoid plays

a key role in proving the validity of Stanley’s trees isomorphism conjecture for proper

𝑞-caterpillars in Section 3.4

In the further chapters, we focus on distinguishing and reconstructing digraphs from their

𝐵-polynomial and quasisymmetric 𝐵-functions.

In Chapter 4, we solve an open question raised in [7] (see Question 4.5). We briefly recall

the 𝐵-polynomial and its expansion in the binomial basis in Section 4.1. In Section 4.2,

we exhibit a subset-sum expansion of the 𝐵-polynomial instrumental in the proof of

Theorem 4.6. We conclude the chapter with some open questions.

In Chapter 5, we delve into a digraph analogue of Stanley’s tree isomorphism conjecture

concerning the quasisymmetric 𝐵-function. We commence with the expansion of the

quasisymmetric 𝐵-function in a monomial quasisymmetric basis in Section 5.1. Following

this, we provide a concise review of the literature pertaining to distinguishing digraphs

by their various quasisymmetric functions in Section 5.2. In Section 5.3, we demonstrate

that partially symmetric orientations of proper caterpillars can be reconstructed based

on their quasisymmetric 𝐵-functions. The methods are further extended in Section 5.4

to prove that quasisymmetric 𝐵-functions distinguish certain orientations of proper

𝑞-caterpillars.
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Consequently, we establish that all orientations of paths can be reconstructed from their

quasisymmetric 𝐵-functions. These results offer a partial solution to the problem

presented in [7, Question 10.7(ii)] and also encourage further exploration of [6,

Conjectures 1.2 and 1.3].

We present non-isomorphic digraphs with equal quasisymmetric 𝐵-functions in Chapter 6.

We achieve this by defining a vertex-weighted quasisymmetric 𝐵-function and show that

this function satisfies a deletion-contraction relation with respect to symmetric arcs.
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CHAPTER 2

PRELIMINARIES

2.1 GRAPHS AND DIRECTED GRAPHS

2.1.1 Graphs

A graph𝐺 is an ordered pair ((𝑉 (𝐺), 𝐸 (𝐺)), alternatively written as𝐺 (𝑉, 𝐸) consisting

of a finite set𝑉 of vertices, and set 𝐸 of 2-element subsets of𝑉 called the edges. Any two

vertices 𝑢 and 𝑣 in a graph 𝐺 (𝑉, 𝐸) are said to be adjacent to 𝑣 if there exists an edge

{𝑢, 𝑣} in 𝐺. For the sake of brevity, we denote the edge {𝑢, 𝑣} by 𝑢𝑣. For a vertex 𝑢, its

neighborhood 𝑁 (𝑢) is the set of vertices in 𝐺 adjacent to 𝑢, and its cardinality is called

the degree of the vertex, denoted by 𝑑 (𝑣). For a graph 𝐺 (𝑉, 𝐸), we call {𝑑 (𝑣)}𝑣∈𝑉 as

the degree sequence of the graphs.

A subgraph 𝐻 (𝑊, 𝐹) of a graph 𝐺 (𝑉, 𝐸) is a graph satisfying𝑊 ⊆ 𝑉 and 𝐹 ⊆ 𝐸 . For a

graph 𝐺 (𝑉, 𝐸), an induced subgraph on a vertex subset𝑊 ⊆ 𝑉 is a graph on vertex set

𝑊 with the set of edges {𝑢𝑣 ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑊}.

In a graph𝐺 (𝑉, 𝐸), a vertex 𝑢 is said to be connected to a vertex 𝑣 if there exists a path in

𝐺 starting at 𝑢 and ending at 𝑣. Observe that connectedness in a graph is an equivalence

relation and, therefore, partitions the graph into equivalence classes called the connected

components of the graphs. A graph is said to be connected if it has exactly one connected

component, or equivalently, every pair of distinct vertices is connected. For a graph 𝐺,

let 𝜅(𝐺) denote its number of connected components.

The length of a path is the number of edges in the path. The length of the longest path in

graph 𝐺 is called the diameter of the graph 𝐺. Let 𝜋𝑖 be the number of paths in graph 𝐺

of length 𝑖. The tuple (𝜋1, 𝜋2, . . . , 𝜋𝑛) is called the path sequence of the graph 𝐺.



A tree is a connected acyclic graph. Equivalently, any connected graph with 𝑛 vertices

and 𝑛 − 1 edges is a tree. An acyclic graph is called as forest. A graph 𝐺 is a forest on 𝑛

vertices if and only if it has 𝑛 − 𝜅(𝐺) edges.

We now recall the deletion and contraction operation on graphs. For a graph 𝐺 (𝑉, 𝐸)

and an edge 𝑒 ∈ 𝐸 , let 𝐺 \ 𝑒 denote the graph on vertex set 𝑉 and edge set 𝐸 \ {𝑒}. On

the other hand, let 𝐺/𝑢𝑣 denote by the graph obtained by identifying the vertices 𝑢 and 𝑣

to a new vertex 𝑤 in the graph 𝐺 \ 𝑢𝑣. The graphs 𝐺 \ 𝑢𝑣 and 𝐺/𝑢𝑣 are graphs obtained

by deletion and contraction of the edge 𝑢𝑣, respectively.

An edge in a graph is said to be a bridge if the number of connected components of 𝐺 \ 𝑒

is more than the number of connected components of 𝐺. Observe that a graph 𝐺 is a

forest if and only if every edge of the graph is a bridge.

2.1.2 Digraphs

A digraph 𝐷 is an ordered pair (𝑉 (𝐷), 𝐴(𝐷)), where 𝑉 (𝐷) represents the finite set of

vertices and 𝐴(𝐷) represents the multiset of arcs in 𝐷. An arc (𝑢, 𝑣) ∈ 𝐴(𝐷) is said to

be outgoing from 𝑢 and incoming to 𝑣. It is important to note that adjacency in a graph is

a symmetric relation, but this symmetry need not hold in a digraph. The cardinality of

the multiset of arcs incoming to 𝑣 and outgoing from 𝑣 is referred to as the in-degree

and out-degree of vertex 𝑣, respectively. The in-degree and out-degree of a vertex 𝑣 is

denoted by 𝑑𝑖 (𝑣) and 𝑑𝑜 (𝑣), respectively. The sequence {(𝑑𝑖 (𝑣), 𝑑𝑜 (𝑣)}𝑣∈𝑉 is called as

the in-out degree sequence of the digraph 𝐷.

The underlying graph of 𝐷, denoted as 𝐷, is the graph obtained by replacing every arc

(𝑢, 𝑣) in 𝐷 with the edge {𝑢, 𝑣}. Henceforth, whenever we refer to an edge in a digraph,

we mean the corresponding edge in the underlying graph. A digraph 𝐷 is said to be an

orientation of a graph 𝐺 if 𝐷 = 𝐺. A digraph is said to be acyclic if it does not contain a

directed cycle.
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2.2 INTEGER COMPOSITIONS AND PARTITIONS

The symmetric and quasisymmetric functions that we study in the subsequent chapters

are parameterized by the integer partitions and compositions, respectively. Our aim in

this section is to provide with a brief introduction of the partitions and compositions.

2.2.1 Integer Compositions

An integer composition 𝛼 of 𝑛, denoted by 𝛼 ⊨ 𝑛 ∈ P, is an ordered sequence of positive

integers (𝛼1, 𝛼2, . . . , 𝛼𝑟) whose sum is 𝑛. The integer 𝛼𝑖 is called the 𝑖th component of

𝛼, and the length of the integer compositions 𝛼, denoted by ℓ(𝛼), is 𝑟 . Let 𝒞𝑛 denote the

set of integer compositions of 𝑛, and 𝒞 =
⋃
𝑛∈P𝒞𝑛.

For any 𝑛 ∈ P, there is a one-to-one correspondence between the integer compositions of

𝑛 and subsets of the set [𝑛 − 1] given by

(𝛼1, 𝛼2, . . . , 𝛼𝑟) ↦−→ {𝛼1, 𝛼1 + 𝛼2, . . . ,

𝑟−1∑︁
𝑘=1

𝛼𝑘 }, and

{𝑠1, 𝑠2, . . . , 𝑠𝑟} ↦−→ (𝑠1, 𝑠2 − 𝑠1, 𝑠3 − 𝑠2, . . . , 𝑠𝑟 − 𝑠𝑟−1, 𝑛 − 𝑠𝑟)

with 𝑠1 < 𝑠2 < · · · < 𝑠𝑟 . For an integer composition 𝛼 ⊨ 𝑛, let set(𝛼) denote the

corresponding subset of [𝑛 − 1].

Let 𝛼 and 𝛽 be two integer compositions of 𝑛. Then 𝛽 is said to be a coarsening of 𝛼 if

𝛼 is obtained by adding some (or no) consecutive parts of 𝛼, and is denoted by 𝛼 ⪯ 𝛽.

For example, (2, 3, 2) ⪯ (2, 5). Let (𝒞𝑛, ⪯) be the poset defined by the coarsening order.

Observe that for any integer compositions 𝛼 and 𝛽 of 𝑛, we have

𝛼 ⪯ 𝛽 ⇐⇒ set(𝛼) ⊇ set(𝛽).

As a consequence, (𝒞𝑛, ⪯) is isomorphic to the boolean lattice (2[𝑛] , ⊇).

2.2.2 Integer Partitions

For a positive integer 𝑛, its integer partition is a finite sequence of non-increasing positive

integers 𝜆 = 𝜆1 𝜆2 · · · 𝜆𝑡 satisfying
∑𝑡
𝑖=1 𝜆𝑖 = 𝑛. For 𝑛 ∈ P, let 𝒫𝑛 denote the set of
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all partitions of 𝑛, and 𝒫 be the set of all partitions.

The integers 𝜆𝑖 are called the parts of 𝜆. The length of the partitions, denoted by ℓ(𝜆), is

the number of parts in the partition, and the sum of the parts is denoted by |𝜆 |.

Alternatively, an integer partition can be denoted by

𝜆 = (1𝑟12𝑟2 · · · )

where 𝑟𝑖 is the multiplicity of the part 𝑖 in 𝜆. Let 𝑟 (𝜆) B 𝑟1!𝑟2! . . . for the integer

partition 𝜆 = (1𝑟12𝑟2 · · · ).

For a detailed exposition to integer partition and compositions, we refer the reader to

[45].

2.3 ALGEBRA OF SYMMETRIC FUNCTIONS

Let P,Z and Q denote the set of positive integers, integers, and rational numbers,

respectively. Let x denote the list of indeterminates 𝑥1, 𝑥2, . . . indexed by P.

Symmetric function occurs in diverse areas of mathematics, including representation

theory, algebraic geometry, invariant theory, and more. The modern presentation of the

symmetric function is accredited to M. Hirsch [21].

Let QJxK be the Q-algebra of formal power series. The degree of the monomial

𝑥
𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑘

𝑖𝑘
is given by

∑𝑘
𝑖=1 𝛼𝑖. Further, formal power series has finite degree if there

exists a positive integer 𝑚 such that the degree of each monomial is bounded by 𝑚. A

formal power series is said to be homogenous of degree 𝑚 if each its monomial is of

degree 𝑚. For a monomial 𝑥𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑘

𝑖𝑘
and 𝑓 ∈ QJxK, let [𝑥𝛼1

𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑘

𝑖𝑘
] 𝑓 denote the

coefficient of 𝑥𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑘

𝑖𝑘
in 𝑓 .

Definition 2.1. A formal power series 𝑓 ∈ QJxK is a symmetric function if
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1. 𝑓 has finite degree,

2. for every composition (𝛼1, 𝛼2, . . . , 𝛼𝑘 ), the coefficients of 𝑥𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑘

𝑖𝑘
in 𝑓 are

equal for all distinct integers 𝑖1, 𝑖2, . . . , 𝑖𝑘 .

Note that the set of symmetric functions forms a subalgebra of QJxK, we denote this

Q-subalgebra by SymQ(x). Equivalently, symmetric functions are finite degree formal

power series that are invariant under the action of permutation of indeterminates.

2.3.1 Bases for the algebra of symmetric functions

In this section, we define various bases of the algebra of symmetric functions.

Monomial symmetric functions

For a partition 𝜆 = 𝜆1 𝜆2 · · · 𝜆𝑘 ⊢ 𝑛, consider the P-tuple (𝜆1, 𝜆2, . . . , 𝜆𝑘 , 0, 0, . . . )

obtained by padding 0’s to the partition 𝜆. Let Perm(𝜆) be the set of P-tuples obtained

by permutation of components of (𝜆1, 𝜆2, . . . , 𝜆𝑘 , 0, 0, . . . ).

Definition 2.2. The monomial symmetric function for an integer partition 𝜆 is defined as

𝑚𝜆 B
∑︁

𝛼∈Perm(𝜆)
𝑥
𝛼1
1 𝑥

𝛼2
2 · · · . (2.1)

It is straightforward to see that 𝑚𝜆 is a symmetric function for all 𝜆 ⊢ 𝑛. Further, {𝑚𝜆}𝜆⊢𝑛

forms a Q-basis for the symmetric functions homogenous of degree 𝑛.

We further define the augmented monomial symmetric functions, which are scalar

multiples of (2.1).

Definition 2.3. For an integer partition 𝜆 = 𝜆1 𝜆2 . . . 𝜆𝑘 = (1𝑟12𝑟2 · · · ) of 𝑛, the

augmented monomial symmetric function is defined as

𝑚𝜆 = 𝑚𝜆 (𝑟1!𝑟2! . . . ) =
∑︁

𝑖1,𝑖2,...,𝑖𝑘
distinct

𝑥
𝜆1
𝑖1
𝑥
𝜆2
𝑖2
· · · 𝑥𝜆𝑘

𝑖𝑘
. (2.2)
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Power sum symmetric functions

Definition 2.4. The power sum symmetric function is defined as follows:

1. for 𝑘 ∈ P, let 𝑝𝑘 B 𝑥𝑘1 + 𝑥
𝑘
2 + · · · .

2. for 𝜆 = 𝜆1 𝜆2 · · · 𝜆𝑟 , let 𝑝𝜆 B 𝑝𝜆1 𝑝𝜆2 · · · 𝑝𝜆𝑟 .

The symmetric functions {𝑝𝜆}𝜆⊢𝑛 forms a Q-basis for the symmetric function

homogeneous of degree 𝑛. Furthermore, the Q-algebra generated {𝑝𝑖}𝑖∈P is equal to the

algebra of symmetric functions over Q.

Other important and well-studied bases of symmetric functions include elementary

symmetric basis, complete homogeneous basis, Schur symmetric functions, and more. A

detail exposition on these symmetric functions can be found in [32, 45].

2.4 ALGEBRA OF QUASISYMMETRIC FUNCTIONS

The algebra of quasisymmetric function was first introduced by Gessel [22] while

studying the 𝑃-partitions. We recall the description of the algebra of quasisymmetric

function over Q, which is a subalgebra of the formal power series.

Definition 2.5. A formal power series 𝑓 ∈ QJxK is said to be quasisymmetric function if

1. 𝑓 has finite degree,

2. for every composition (𝛼1, 𝛼2, . . . , 𝛼𝑘 ), the coefficients of 𝑥𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑘

𝑖𝑘
in 𝑓 are

equal for all strictly increasing 𝑘-tuples 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 .

We denote the algebra of quasisymmetric function over Q by QSymQ(x). Let QSym𝑛
𝑅 (x)

denote the collection of quasisymmetric functions homogeneous of degree 𝑛.

2.4.1 Bases for the algebra of quasisymmetric functions

We recall certain Q-bases for the algebra of quasisymmetric functions.
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Monomial quasisymmetric functions

Definition 2.6. For an integer composition 𝛿 = (𝛿1, . . . , 𝛿𝑘 ) ⊨ 𝑛, the monomial

quasisymmetric function 𝑀𝛿 is defined as

𝑀𝛿 :=
∑︁

𝑖1<𝑖2<···<𝑖𝑘
𝑥
𝛿1
𝑖1
𝑥
𝛿2
𝑖2
· · · 𝑥𝛿𝑘

𝑖𝑘
,

where the sum is over all increasing 𝑘-tuples of positive integers.

The collection {𝑀𝛿}𝛿⊨𝑛 forms an Q-basis of QSym𝑛
Q(x) (see [45]). For a quasisymmetric

function 𝑓 , let [𝑀𝛿] 𝑓 denote the coefficient of 𝑀𝛿 obtained by expressing 𝑓 in the

monomial quasisymmetric basis over Q.

Fundamental quasisymmetric function

The fundamental quasisymmetric function was primarily studied for the 𝑃-partitions of

posets and their linear extensions.

Definition 2.7. For an integer composition 𝛼 ⊨ 𝑛, the fundamental quasisymmetric

function is defined as

𝐹𝛼 B
∑︁
𝛽⪯𝛼

𝑀𝛽 (2.3)

where ⪯ is the coarsening order defined in Section 2.2.1.

For example, 𝐹(2,2) = 𝑀(1,1,2) + 𝑀(2,1,1) + 𝑀(1,1,1,1) + 𝑀(2,2) .

In terms of the indeterminates, the fundamental quasisymmetric function for an integer

composition 𝛼 ⊨ 𝑛 is defined as

𝐹𝛼 =
∑︁

(𝑖1,𝑖2,...,𝑖𝑘)
𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑘 , (2.4)

where the sum is taken over all non-decreasing 𝑘-tuples (𝑖1, 𝑖2, . . . , 𝑖𝑘 ) satisfying 𝑖 𝑗 < 𝑖 𝑗+1

for 𝑗 ∈ set(𝛼).

Other bases of quasisymmetric functions include quasisymmetric Schur functions,
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Φ−power sum quasisymmetric functions, Ψ-power sum quasisymmetric functions, etc.

For further details, we refer the reader to [31, 8].
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CHAPTER 3

CHROMATIC SYMMETRIC FUNCTION

In this chapter, we study the chromatic symmetric function of graphs and Stanley’s Tree

Isomorphism Conjecture, which posits that non-isomorphic trees are distinguished by

their chromatic symmetric function. We define a generalization of caterpillars that we

call proper 𝑞-caterpillars, and show that Stanley’s Tree Isomorphism Conjecture holds

for proper 𝑞-caterpillars, for all 𝑞 ≥ 2.

3.1 STANLEY’S TREE ISOMORPHISM CONJECTURE

We begin with the definition of the chromatic symmetric function, introduced by R.

Stanley [41], that generalizes the chromatic polynomial of a graph to a symmetric

function.

Definition 3.1 ([41]). The chromatic symmetric function of a graph 𝐺 = (𝑉, 𝐸) is

defined as

X𝐺 :=
∑︁
𝑓 :𝑉→P
proper

x𝑐( 𝑓 ) . (3.1)

where 𝑐( 𝑓 ) = ( | 𝑓 −1(1) |, | 𝑓 −1(2) |, . . . ).

Recall that the chromatic polynomial of a graph 𝐺, denoted as 𝜒𝐺 , evaluated at 𝑘 yields

the number of proper colorings of the graph 𝐺 using 𝑘 colors. In this context, the

chromatic symmetric function generalizes the chromatic polynomial as follows:

Proposition 3.2 ([41, Proposition 2.2]). For 𝑘 ∈ P, we have

X𝐺 (1, 1, . . . , 1︸      ︷︷      ︸
𝑘

, 0, 0, . . . ) = 𝜒𝐺 (𝑘).

Note that the chromatic symmetric function is indeed symmetric in x since any permutation



of the colors does not affect the properness of colorings. Moreover, the chromatic

symmetric function X𝐺 homogeneous in x with degree |𝑉 |. It is straightforward to see

that for any two isomorphic graphs 𝐺 and 𝐻 with 𝜓 : 𝐺 ≃→ 𝐻 as a graph isomorphism,

we have

𝑋𝐺 =
∑︁

𝑓 :𝑉 (𝐺)→P
proper

x𝑐( 𝑓 ) =
∑︁

𝑓 ◦𝜓−1:𝑉 (𝐻)→P
proper

x𝑐( 𝑓 ) =
∑︁

𝑔:𝑉 (𝐻)→P
proper

x𝑐(𝑔) = 𝑋𝐻 .

Therefore, isomorphic graphs share the same chromatic symmetric functions, or

equivalently, the chromatic symmetric function is a graph invariant. This raises the

question of whether the chromatic symmetric function encodes sufficient information to

distinguish non-isomorphic graphs. Unfortunately, the answer is negative. R. Stanley

presented two non-isomorphic graphs, both containing cycles, that share the same

chromatic symmetric function (see Figure 3.1).

Figure 3.1: Non-isomorphic graphs with the same chromatic symmetric function

In fact, there exist infinitely many pairs of (unicyclic) non-isomorphic graphs with the

same chromatic symmetric function [15, 37]. However, the question remains open for

trees and is conjectured to be true, commonly known as Stanley’s Tree Isomorphism

Conjecture.

Conjecture 3.3. The chromatic symmetric function distinguishes trees.

The conjecture has been open for nearly three decades and is believed to be true.

Substantial progress has been made in confirming the conjecture for various subclasses of

trees. Martin et. al proved the conjecture for specific classes of caterpillars, spiders, and

certain unicyclic graphs by establishing the connection between the chromatic symmetric

function and the subtree polynomial [33, 12]. Additionally, Aliste-Prieto and Zamora

[3] showed that the conjecture holds for proper caterpillars, while Loebl and Sereni [30]
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extended this result to all caterpillars. Tsujie proved that the trivially perfect graphs

can be distinguished by their chromatic symmetric functions [48], while in [2], it was

proven for certain trees with a diameter of at most 5. To explore additional examples

of graphs that can be distinguished based on their chromatic symmetric function, refer

to [13, 18, 27, 50]. The conjecture has been verified for all vertices up to 29 using

computer-based computations [26].

3.1.1 Bases expansion of Chromatic Symmetric Function

We begin with expanding the chromatic symmetric function in certain bases of symmetric

function, wherein the coefficients determine various statistics of the graphs.

1 2

12

type 22
1 2

13

type 211
3 1

21

type 211
1 2

34

type 1111

Figure 3.2: Stable set partitions of the 4-cycle.

For a graph 𝐺 = (𝑉, 𝐸), a set partition of 𝑉 into non-empty sets is said to be stable if

every block of the set partition is an independent set in 𝐺. The type of the set partition is

the integer partition defined by the sizes of its blocks. The following proposition exhibits

that the chromatic symmetric function expanded in augmented monomial symmetric

function basis determines the number of stable set partitions of 𝐺 having type 𝜆. For

example, Figure 3.2 exhibits all stable partitions of the 4-cycle.

Proposition 3.4 ([41, Proposition 2.3]). For a graph 𝐺 = (𝑉, 𝐸), let Stab𝜆 denote the

collection of stable set partitions of 𝐺 of type 𝜆. Then, we have

X𝐺 =
∑︁
𝜆⊢|𝑉 |
| Stab𝜆 |𝑚𝜆.

where {𝑚𝜆}𝜆⊢|𝑉 | is the set of augmented monomial symmetric functions.

For example, the expansion of the chromatic symmetric function of a 4-cycle in augmented
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(a) 1 1 1 (b) 2 1 (c) 2 1 (d) 2 1

(e) 3 (f) 3 (g) 3 (h) 3

Figure 3.3: Spanning subgraphs of 𝐾3 along with the partitions determined by the orders
of their connected components.

monomial symmetric function basis is 𝑚22 + 2𝑚211 + 𝑚1111.

Given a graph 𝐺 = (𝑉, 𝐸) and a subset 𝐹 ⊆ 𝐸 , let 𝐺 [𝐹] denote the spanning subgraph

(𝑉, 𝐹) of 𝐺. Let 𝜆[𝐹] be the partition of |𝑉 | formed by the orders of the connected

components of the spanning subgraph 𝐺 [𝐹].

Theorem 3.5 ([41, Theorem 2.5]). For a graph 𝐺, the expansion of the chromatic

symmetric function in the power sum symmetric function basis is

X𝐺 =
∑︁
𝐹⊆𝐸
(−1) |𝐹 |𝑝𝜆[𝐹] (x). (3.2)

where {𝑝𝜆}𝜆⊢|𝑉 | is the set of power sum symmetric functions.

For example, we infer from Figure 3.3 that

X𝐾3 = 𝑝111 − 3𝑝21 + 3𝑝3 − 𝑝3 = 𝑝111 − 3𝑝21 + 2𝑝3.

Observe that the coefficient of −𝑝211···1 in the chromatic symmetric function is the

number of edges of the graph. Similarly, other properties like girth, number of connected

components, diameter (of trees), etc. can be recovered from the chromatic symmetric

function [35].
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3.1.2 𝑈-polynomial

We now recall the U-polynomial defined by Noble and Welsh [36], which establishes a

strong connection with the chromatic symmetric function due to the expansion (3.2). For

a partition 𝜆 = 𝜆1 𝜆2 · · · 𝜆𝑘 ⊢ 𝑛, let x𝜆 denote the monomial 𝑥𝜆1𝑥𝜆2 · · · 𝑥𝜆𝑘 ,

Definition 3.6 ([36]). Given a graph 𝐺 = (𝑉, 𝐸), the U-polynomial of the graph is

defined as

U𝐺 (x; 𝑦) =
∑︁
𝐹⊆𝐸

x𝜆[𝐹] (𝑦 − 1) |𝐹 |−|𝑉 |+𝜅 (𝐹) ,

where 𝜅(𝐹) is the number of connected components in the spanning subgraph 𝐺 [𝐹], or

equivalently the length of partition 𝜆[𝐹].

For example, the𝑈-polynomial of a 4-cycle is 𝑥3
1 + 3𝑥2𝑥1 + 3𝑥3 + 𝑥3(𝑦 − 1).

A subtle but key observation is that information about certain spanning subgraphs may

be lost in the chromatic symmetric function due to the alternating sum. However, the

𝑈-polynomial encodes monomials with respect to each spanning subgraph, along with

its cyclomatic number (|𝐹 | − |𝑉 | + 𝜅(𝐹)) (see [11] for an exposition on the cyclomatic

number).

We now show that, when restricted to trees, both the chromatic symmetric function and

the 𝑈-polynomial are equivalent graph invariants. Note that any spanning subgraph

𝑇 [𝐹] of a tree 𝑇 = (𝑉, 𝐸) must have |𝑉 | − |𝐹 | connected components. This implies that

|𝐹 | − |𝑉 | + 𝜅(𝐹) = 0 for all 𝐹 ⊆ 𝐸 . Therefore, for any tree 𝑇 , we have

(−1) |𝑉 |U𝑇 (−𝑝1(x),−𝑝2(x),−𝑝3(x), . . . ; 𝑦) = (−1) |𝑉 |
(∑︁
𝐹⊆𝐸
(−1)𝜅 (𝐹) 𝑝𝜆[𝐹] (x) (𝑦 − 1)0

)
=

∑︁
𝐹⊆𝐸
(−1) |𝑉 |−𝜅 (𝐹) 𝑝𝜆[𝐹] (x)

=
∑︁
𝐹⊆𝐸
(−1) |𝐹 |𝑝𝜆[𝐹] (x)

= X𝑇

(3.3)
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This implies that any two trees have the same chromatic symmetric function if and only if

they share the same U-polynomial. Therefore, Stanley’s Tree Isomorphism Conjecture is

equivalent to distinguishing trees by their𝑈-polynomials. As the variable 𝑦 is redundant

for the𝑈-polynomial of trees, we omit it for the remainder of this chapter.

3.2 PROPER Q-CATERPILLARS

A tree is said to be a caterpillar if deleting all its pendant vertices results in a path. Such

a caterpillar is said to be proper if every non-pendant vertex is adjacent to at least one

leaf. We consider the following generalization of proper caterpillars.

Definition 3.7 (proper 𝑞-caterpillars). Let 𝑞 ≥ 1 be fixed. A proper 𝑞-caterpillar 𝑇 is

constructed as follows: We begin with a path 𝑆 = ⟨𝑣1, . . . , 𝑣ℓ⟩ (with endpoints 𝑣1 and

𝑣ℓ) called the spine, with ℓ > 0. For every 1 ≤ 𝑖 ≤ ℓ, we glue (endpoint of the path

identified with a vertex on the spine) 𝑝𝑖 additional paths of length exactly 𝑞 to the vertices

𝑣𝑖, respectively, where 𝑝𝑖 ∈ P. (For example, see Figure 3.4.)

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

path of
length 𝑞

Figure 3.4: Example of a proper 𝑞-caterpillar with spine ⟨𝑣1, 𝑣2, . . . , 𝑣5⟩ with associated
integer composition (𝑞 + 1, 2𝑞 + 1, 𝑞 + 1, 3𝑞 + 1, 2𝑞 + 1).

In this context, proper 1-caterpillars have been distinguished by their chromatic symmetric

functions up to isomorphism [3]. For 𝑞 ≥ 1, we show that the chromatic symmetric

function recognizes whether a tree is a proper 𝑞-caterpillar or not. Furthermore, we

prove that for 𝑞 ≥ 2, proper 𝑞-caterpillars are distinguished by their chromatic symmetric

functions.

The proof is based on ideas involved in [3], that is, associating proper 𝑞-caterpillars
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with integer compositions, and the interrelations of the chromatic symmetric function,

𝑈-polynomial and L-polynomial. Note that for 𝑞 ≥ 2, every integer composition

(𝑝1, 𝑝2, . . . , 𝑝ℓ) with each component being positive corresponds to a unique proper

𝑞-caterpillar (up to isomorphism) with 𝑝𝑖 many paths of length 𝑞 incident on the

vertex 𝑣𝑖 of the spine ⟨𝑣1, 𝑣2, . . . , 𝑣ℓ⟩. Therefore, for each such integer composition

lexicographically smaller than its reverse, there are infinitely many trees (one for each

𝑞 ≥ 2) that can be distinguished by chromatic symmetric function, thereby attaining

a significant improvement in the pool of trees that are known to satisfy Stanley’s Tree

Isomorphism Conjecture.

We begin by characterizing proper 𝑞-caterpillars in terms of the statistics that can be

retrieved from the chromatic symmetric function. This allows us to differentiate proper

𝑞-caterpillars from other types of trees.

Given a tree 𝑇 = (𝑉, 𝐸), the trunk 𝑇◦ of 𝑇 is the smallest subtree containing all vertices

of degree at least three. For each pendant vertex 𝑢 of 𝑇 , there exists a unique path starting

at 𝑢 and ending at some vertex in the trunk such that all internal vertices of the path have

degree two. Each such path is called a twig, and let Twig(𝑇) be the multiset representing

the lengths of twigs in 𝑇 . Evidently, every tree containing a vertex of degree at least

three can be decomposed into the trunk 𝑇◦ and some twigs. L. Crew proved that the

order of 𝑇◦, and the multiset Twig(𝑇) can be determined by the chromatic symmetric

function [13].

← trunk

Figure 3.5: Decomposition of a tree 𝑇 into trunk and twigs, with |𝑇◦ | = 7 and Twig(𝑇) =
{1, 1, 1, 1, 1, 2, 2}.
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It is clear that a path 𝑇 is a proper 𝑞-caterpillar if and only if its order is either 𝑞 +1, 2𝑞 +1

or 2𝑞 + 2. For proper 𝑞-caterpillars that are not paths, we characterize the proper

𝑞-caterpillars using tree-invariants determined by the chromatic symmetric functions.

Theorem 3.8 ([12, 13, 33]). For a tree 𝑇 (𝑉, 𝐸), its order, degree sequence, diameter,

order of the trunk 𝑇◦, and the multiset Twig(𝑇) can be recovered from its chromatic

symmetric function.

Proposition 3.9. Let 𝑞 ≥ 1 be fixed and 𝑇 = (𝑉, 𝐸) be a tree that is not a path. Then 𝑇

is a proper 𝑞-caterpillar if and only if it satisfies the following:

(i) |𝑇◦ | = |𝑉 | − 𝛿1 − 𝛿2 where 𝛿𝑖 is the number of vertices of degree 𝑖 in 𝑇 .

(ii) Twig(𝑇) only contains integers 𝑞 and 𝑞+1, with 𝜇𝑞+1 ≤ 2 where 𝜇𝑞+1 is the
multiplicity of 𝑞+1 in Twig(𝑇).

(iii) diam(𝑇) = ( |𝑇◦ | − 1) + 2𝑞 + 𝜇𝑞+1.

Proof. (⇒) It is clear that every proper 𝑞-caterpillar that is not a path satisfies the above

three conditions.

(⇐) A tree satisfying |𝑇◦ | = 1 and (𝑖𝑖) is indeed a proper 𝑞-caterpillar. Thus we may

assume that |𝑇◦ | ≥ 2. Note that diam(𝑇) ≤ 2𝑞 + diam(𝑇◦) + 𝜇𝑞+1 along with (𝑖𝑖𝑖)

implies that ( |𝑇◦ | − 1) ≤ diam(𝑇◦), and hence 𝑇◦ is a path, say ⟨𝑤1, 𝑤2, . . . , 𝑤𝑘⟩ (with

endpoints 𝑤1 and 𝑤𝑘 ). From (𝑖), it follows that 𝑇◦ consists only of vertices of degree at

least 3, owing to which every vertex of the trunk must be incident to at least one twig. To

prove that 𝑇 is a proper 𝑞-caterpillar, it suffices to prove that twigs of length 𝑞 + 1 (if they

exist) are incident to the distinct endpoints of the trunk. For 1 ≤ 𝑖 ≤ 𝑘 , let 𝑤𝑖 be incident

to 𝑛𝑖 many twigs 𝑃𝑡
𝑖

(1 ≤ 𝑡 ≤ 𝑛𝑖). Let 𝑢𝑡
𝑖

be the pendant vertex of the twig 𝑃𝑡
𝑖
(1 ≤ 𝑡 ≤ 𝑛𝑖).

In the resulting tree 𝑇 , the distance between the vertices 𝑢𝑡
𝑖

and 𝑢𝑠
𝑗

is given by

𝑑 (𝑢𝑡𝑖 , 𝑢𝑠𝑗 ) = ℓ(𝑃𝑡𝑖 ) + |𝑖 − 𝑗 | + ℓ(𝑃𝑠𝑗 )

where ℓ(𝑃𝑡
𝑖
) is the length of the twig with endpoint 𝑢𝑡

𝑖
. From the above computation, the

endpoints of the path in 𝑇 of length diam(𝑇) must be 𝑤𝑡1 and 𝑤𝑠
𝑘

for some 1 ≤ 𝑡 ≤ 𝑛1
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path of
length 𝑞

spine

← trunk

Figure 3.6: Example of a proper 𝑞-caterpillar with spine of order 5, trunk of order 4 and
the multiset of twigs is {𝑞, 𝑞, . . . , 𝑞︸       ︷︷       ︸

8 times

, 𝑞+1}.

and 1 ≤ 𝑠 ≤ 𝑛𝑘 . This together with (𝑖𝑖) and (𝑖𝑖𝑖) dictates the position of 𝑞+1-twigs as

follows:

𝜇𝑞+1 =



0 if neither 𝑤1 nor 𝑤𝑘 is incident to a 𝑞 + 1-length twig,

1 if exactly one of 𝑤1 or 𝑤𝑘 is incident to 𝑞 + 1-length twig,

2 if both 𝑤1 and 𝑤𝑘 are incident to 𝑞 + 1-length twig.

Therefore, the tree 𝑇 is a proper 𝑞-caterpillar, and this completes the proof. ■

Note. The trunk of the proper 𝑞-caterpillar may not coincide with the spine (see

Figure 3.6). However, it is always a subpath of the spine.

3.3 MONOID OF INTEGER COMPOSITIONS

Before proceeding to the main theorem of this chapter, we revisit the factorization of

integer compositions introduced in [9]. This factorization is instrumental for determining

the isomorphism classes of proper 𝑞-caterpillars.

3.3.1 L-polynomial

Let 𝒞 denote the set of all integer compositions. Recall that an integer composition 𝛽 is

said to be a coarsening of an integer composition 𝛼 if 𝛽 is obtained by adding some (or

no) consecutive parts of 𝛼, denoted by 𝛼 ⪯ 𝛽. For example, (5, 5, 3, 5) ⪯ (10, 8). Let

(𝒞, ⪯) be the poset with the coarsening order. Note that for a fixed integer 𝑛, the poset
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of integer compositions of 𝑛 under the coarsening order form a complete boolean lattice

of order 𝑛. In [9], Billera, Thomas and Willigenburg defined an equivalence relation on

𝒞 based on the equality of the multiset

M(𝛼) B {𝜆(𝛽) ∈ 𝒞 | 𝛼 ⪯ 𝛽},

where 𝜆(𝛽) is the partition obtained by arranging the components of 𝛽 in non-increasing

order. We consider the polynomial interpretation of this equivalence relation called the

L-polynomial (or the composition-lattice polynomial) introduced in [3].

The L-polynomial of an integer composition 𝛼 is defined as

L(x;𝛼) =
∑︁
𝛽⪰𝛼

𝑥𝛽1𝑥𝛽2 . . . 𝑥𝛽𝑟 .

For instance, the L-polynomial of the composition (5, 5, 3, 5) is 𝑥3𝑥
3
5 + 𝑥3𝑥5𝑥10 + 2𝑥2

5𝑥8 +

2𝑥5𝑥13 + 𝑥8𝑥10 + 𝑥18.

(5, 5, 3, 5)

(5, 5, 8)(5, 8, 5)(10, 3, 5)

(10, 8) (5, 13)(13, 5)

(18)

Figure 3.7: Coarsening of (5, 5, 3, 5).

3.3.2 Factorization of integer compositions

Note that the equality of the L-polynomial induces an equivalence relation on the integer

compositions. Let [𝛼]L denote the equivalence class of 𝛼 under this equivalence relation.
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We recall its description using the “unique” factorization defined on the set of integer

compositions.

Definition 3.10. For any two compositions 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑟) and

𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑠), their concatenation is given by

𝛼 · 𝛽 := (𝛼1, 𝛼2, . . . , 𝛼𝑟 , 𝛽1, 𝛽2, . . . , 𝛽𝑠),

whereas the near-concatenation operation is defined as

𝛼 ⊙ 𝛽 := (𝛼1, 𝛼2, . . . , 𝛼𝑟−1, (𝛼𝑟 + 𝛽1), 𝛽2, . . . , 𝛽𝑠).

Let 𝛼⊙𝑞 denote the 𝑞-fold near-concatenation 𝛼 ⊙ 𝛼 ⊙ · · · ⊙ 𝛼︸              ︷︷              ︸
𝑞 times

, for any positive integer 𝑞.

The composition of two integer compositions is given by

𝛼 ◦ 𝛽 := 𝛽⊙𝛼1 · 𝛽⊙𝛼2 · · · · · 𝛽⊙𝛼𝑟 .

For example, (2, 1) ◦ (2, 3) = ((2, 3) ⊙ (2, 3)) · (2, 3) = (2, 5, 3) · (2, 3) = (2, 5, 3, 2, 3).

Proposition 3.11 ([9, Proposition 3.3]). (𝒞, ◦) is a non-commutative associative monoid

with the integer composition 1 as the identity element.

A factorization 𝛼 = 𝜀 ◦ 𝜂 is said to be trivial if one of the following is satisfied:

a) either 𝜀 or 𝜂 is the identity composition 1,

b) both 𝜀 and 𝜂 are of length 1,

c) both 𝜀 and 𝜂 have all parts equal to 1.

An integer composition is said to be irreducible if it admits only trivial factorizations.

A factorization 𝛼 = 𝜂1 ◦ 𝜂2 ◦ · · · ◦ 𝜂𝑘 is said to be an irreducible factorization if each

integer composition 𝜂𝑖 is irreducible and no 𝜂𝑖 ◦ 𝜂𝑖+1 is a trivial factorization.

Theorem 3.12 ([9, Theorem 3.6]). Every integer composition admits a unique irreducible

factorization.
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This factorization can be compared to the prime factorization within a unique factorization

domain. In this analogy, compositions of length 1 with all parts equal to 1 in 𝒞 can be

seen as analogous to units in the UFD.

We now revisit the characterization of integer compositions that share the same L-

polynomial as the integer compositions 𝛼, based on the irreducible factorization of 𝛼.

Let 𝛼∗ be the integer composition obtained by reversing 𝛼, that is, the 𝑖th component of

𝛼∗ is 𝛼ℓ(𝛼)−𝑖+1 for 1 ≤ 𝑖 ≤ ℓ(𝛼).

Theorem 3.13 ([9, Theorem 4.1]). Let𝛼 = 𝜂1◦𝜂2◦· · ·◦𝜂𝑘 be the irreducible factorization

of 𝛼. Then

[𝛼]L = {𝜀1 ◦ 𝜀2 ◦ · · · ◦ 𝜀𝑘 | 𝜀𝑖 = 𝜂𝑖 or 𝜀𝑖 = 𝜂𝑖∗, for all 𝑖 = 1, 2, . . . 𝑘} ,

Example 3.14. Consider the integer composition (4, 10, 4, 10) with its irreducible

factorization given by (1, 1) ◦ (2, 5) ◦ (2). Then the equivalence class

[(4, 10, 4, 10)]L = {(1, 1)◦(2, 5)◦(2), (1, 1)◦(5, 2)◦(2)} = {(4, 10, 4, 10), (10, 4, 10, 4)}.

3.4 DISTINGUISHING PROPER 𝑞-CATERPILLARS

We showed in Proposition 3.9 whether a tree is a proper 𝑞-caterpillars or not can be

determined by the statistics recoverable by its chromatic symmetric function. We now

proceed to show that the chromatic symmetric function distinguishes non-isomorphic

proper 𝑞-caterpillars. We accomplish this by associating each proper 𝑞-caterpillar with

a unique integer composition. In Lemma 3.16, we relate the 𝑈-polynomial of proper

𝑞-caterpillars with the L-polynomial of corresponding integer composition. Further, we

show that any two proper 𝑞-caterpillars are isomorphic if and only if their corresponding

compositions are either the same or reverses of one another. Finally, we combine these

ideas to prove that the chromatic symmetric function distinguishes proper 𝑞-caterpillars.

Let 𝑞 ≥ 2, and 𝑇 be a proper 𝑞-caterpillar. Let ⟨𝑣1, 𝑣2, . . . 𝑣ℓ⟩ denote the spine of 𝑇 . Let
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𝑣1 𝑣2 𝑣3 𝑣4

Figure 3.8: Proper 2-caterpillar 𝑇 with 𝜑(𝑇) = (5, 5, 3, 5).

𝑝𝑖 represent the number of paths in 𝑇 of length 𝑞, starting from a leaf and ending at 𝑣𝑖.

We define a composition 𝜑(𝑇) of length ℓ whose 𝑖th component is 𝑞·𝑝𝑖 + 1. Conversely,

for any integer composition 𝛼 with all components greater than one and congruent to 1

modulo 𝑞, we construct a proper 𝑞-caterpillar 𝜏(𝛼) as follows: consider a path with ℓ(𝛼)

vertices, which serves as the spine, and glue 𝛼𝑖−1
𝑞

new paths of length 𝑞 to the 𝑖th vertex of

the spine. The mapping 𝜑 and 𝜏 are inverses of each other. For instance, see Figure 3.8.

Proposition 3.15. Any two proper 𝑞-caterpillars 𝑆 and 𝑇 are isomorphic if and only if

𝜑(𝑆) = 𝜑(𝑇) or 𝜑(𝑆) = 𝜑(𝑇)∗.

Proof. (⇐) It is straightforward to see that 𝜑(𝑆) = 𝜑(𝑇) or 𝜑(𝑆) = 𝜑(𝑇)∗ implies that

𝑆 and 𝑇 are isomorphic.

(⇒) Let Ψ : 𝑆 → 𝑇 be an isomorphism. Then, when restricted to the spine

⟨𝑣1, 𝑣2, . . . , 𝑣ℓ⟩, the isomorphism Ψ either maps 𝑣𝑖 ↦→ 𝑣𝑖 for all 𝑖 = 1, 2, . . . , ℓ, or

𝑣𝑖 ↦→ 𝑣ℓ−𝑖+1 for all 𝑖 = 1, 2, . . . , ℓ. Consequently, 𝜑(𝑆) = 𝜑(𝑇) in the former case,

whereas 𝜑(𝑆) = 𝜑(𝑇)∗ in the latter case. ■

The following lemma is a generalization of [3, Proposition 2.5], that obtains L(𝜑(𝑇); x)

as an evaluation of the𝑈-polynomial𝑈𝑇 (x), for a proper 𝑞-caterpillar 𝑇 .

Lemma 3.16. Let 𝑞 ≥ 1. For any proper 𝑞-caterpillar 𝑇 = (𝑉, 𝐸) and the composition

𝜑(𝑇) associated to 𝑇 , we have

U𝑇 (0, 0, . . . , 0︸      ︷︷      ︸
𝑞 times

, 𝑥𝑞+1, 𝑥𝑞+2, . . . ) = L(𝜑(𝑇); x).
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Proof. The U-polynomial with 𝑥1 = 𝑥2 = · · · = 𝑥𝑞 = 0 can be interpreted as the subset-

sum over 𝐹 ⊆ 𝐸 such that each connected component of the induced subgraph 𝑇 [𝐹]

has order at least 𝑞 + 1. This implies that such an 𝐹 must contain all non-spine edges

(otherwise, the induced subgraph 𝑇 [𝐹] would contain a connected component of order at

most 𝑞). Thus every monomial x𝜆[𝐹] in U𝑇 (0, 0, . . . , 0, 𝑥𝑞+1, 𝑥𝑞+2, . . . ) corresponds to the

subset 𝐹′ B 𝐹 ∩ 𝑆, where 𝑆 is the set of spine edges. Any such subset 𝐹′ of spine-edges

determines a unique coarsening 𝜑(𝑇)𝐹′ of the composition 𝜑(𝑇) in the poset (𝒞, ⪯)

obtained as follows: for maximal paths ⟨𝑣1, . . . , 𝑣𝑖1⟩, ⟨𝑣𝑖1+1, . . . , 𝑣𝑖2⟩, . . . , ⟨𝑣𝑖𝑘+1, . . . , 𝑣ℓ⟩

in 𝑇 [𝐹′] with 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 ≤ ℓ, define

𝜑(𝑇)𝐹′ B ©­«
𝑖1∑︁
𝑗=1

𝜑(𝑇) 𝑗 ,
𝑖2∑︁

𝑗=𝑖1+1
𝜑(𝑇) 𝑗 , . . . ,

ℓ∑︁
𝑗=𝑖𝑘+1

𝜑(𝑇) 𝑗ª®¬ .
Observe that the monomial contributed by the subset 𝐹 in U𝑇 (0, 0, . . . , 0, 𝑥𝑞+1, 𝑥𝑞+2, . . . )

is same as the monomial contributed by the coarsening 𝜑(𝑇)𝐹′ in L(𝜑(𝑇); x). (See

Figure 3.9 for an example.) Therefore we have

U𝑇 (0, 0, . . . , 0, 𝑥𝑞+1, 𝑥𝑞+2, . . . ) =
∑︁
𝐹⊆𝐸

𝐹 contains all
non-spine edges

x𝜆[𝐹] = L(𝜑(𝑇); x).

■

Lemma 3.16 along with the equivalence of chromatic symmetric function and 𝑈-

polynomial implies that the chromatic symmetric function determines the L-polynomial.

The following lemma plays a vital role in the irreducible factorization of the integer

compositions associated with the proper 𝑞-caterpillars.

Lemma 3.17. Let 𝑞 ≥ 2 and ℎ be positive integers such that 𝑞 does not divide ℎ. Let 𝛾

be an integer composition in which each component is congruent to ℎ modulo 𝑞 and the

greatest common divisor (gcd) of all components is 1. Then either 𝛾 is irreducible or its

irreducible factorization is 𝛾 = (1𝑚) ◦ 𝜔 where 𝜔 is an integer composition and (1𝑚)

denotes the integer composition (1, 1, . . . , 1)︸         ︷︷         ︸
𝑚

, for some 𝑚 ≥ 1.
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(5, 5, 3, 5)
(𝑥3𝑥

3
5)

(10, 3, 5)
(𝑥3𝑥5𝑥10)

(5, 8, 5)
(𝑥2

5𝑥8)

(5, 5, 8)
(𝑥2

5𝑥8)

(13, 5)
(𝑥5𝑥13)

(5, 13)
(𝑥5𝑥13)

(10, 8)
(𝑥8𝑥10)

(18)
(𝑥18)

Figure 3.9: Bijection between coarsenings of integer composition and subgraphs of
proper 2-caterpillar corresponding to (5, 5, 3, 5) containing all non-spine
edges.
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Proof. We may assume that 𝛾 is not irreducible. We prove using induction on length of

𝛾. Let 𝛾 = 𝜁 ◦ 𝜂 be a non-trivial factorization of 𝛾. We claim that each component of

𝜁 must be equal to 1. Assume to the contrary that 𝜁 contains at least one component

greater than 1, and let 𝑖 be the smallest index with the 𝑖th component 𝜁𝑖 > 1. The gcd

of all components of 𝛾 being 1 implies that the length of 𝜂 must be at least 2. Since

𝛾1 = 𝜂1 and 𝛾ℓ(𝛾) = 𝜂ℓ(𝜂) , both 𝜂1 and 𝜂ℓ(𝜂) are congruent to ℎ modulo 𝑞. For 𝑘 = ℓ(𝜂)·𝑖,

consider the 𝑘 th component of 𝛾 = 𝜁 ◦ 𝜂. By the given hypothesis, we get 𝛾𝑘 to be

congruent to ℎ modulo 𝑞, but the factorization implies

𝜀𝑘 = (𝜁 ◦ 𝜂)𝑘 = 𝜂1 + 𝜂ℓ(𝜂) ≡ 2ℎ (mod 𝑞).

This is not possible because ℎ is non-zero modulo 𝑞. Therefore 𝜁 must have all the

components equal to 1, that is, 𝛾 = (1𝑟) ◦ 𝜂 for some 𝑟 ≥ 2. Note that 𝜂 satisfies the

given hypothesis and its length ℓ(𝜂) < ℓ(𝛾). Using induction, either 𝜂 is irreducible or

its irreducible factorization is (1𝑠) ◦ 𝜔, and consequently, the irreducible factorization

of 𝛾 is (1𝑟) ◦ 𝜂 or (1𝑟𝑠) ◦ 𝜔, respectively. Thus 𝛾 admits the required irreducible

factorization. ■

Using Lemma 3.17, we can conclude that the proper 𝑞-caterpillars are distinguished by

the chromatic symmetric functions up to isomorphism.

Theorem 3.18. For 𝑞 ≥ 2, the chromatic symmetric function distinguishes isomorphism

classes of proper 𝑞-caterpillars.

Proof. Let 𝑞 ≥ 2. Let 𝑆 and 𝑇 be two proper 𝑞-caterpillars with the same chromatic

symmetric function. Lemma 3.16 implies that the L-polynomial of 𝜑(𝑆) and 𝜑(𝑇)

are equal as well. Note that it suffices to prove the equivalence class [𝜑(𝑇)]L =

{𝜑(𝑇), 𝜑(𝑇)∗}, as it would imply 𝜑(𝑆) = 𝜑(𝑇) or 𝜑(𝑆) = 𝜑(𝑇)∗. This, along with

Proposition 3.15 would imply that 𝑆 is isomorphic to 𝑇 . If the gcd of all components of

𝜑(𝑇) is 1, then by Lemma 3.17 either 𝜑(𝑇) is irreducible or its irreducible factorization is

(1𝑟) ◦𝜔 for some integer composition 𝜔. On the other hand, if the gcd of all components
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is 𝑑 which is greater than 1, then factorize 𝜑(𝑇) = 𝜀 ◦ 𝑑. Note that the gcd of all

components of 𝜀 is 1, and each component is congruent to ℎ modulo 𝑞, where ℎ is the

least positive integer satisfying 𝑑·ℎ ≡ 1 (mod 𝑞). By Lemma 3.17, either 𝜀 is irreducible

or its irreducible factorization must be (1𝑟) ◦ 𝜔 for some 𝑟 ≥ 2. This implies that the

irreducible factorization of 𝜑(𝑇) is 𝜀 ◦ 𝑑 or (1𝑟) ◦ 𝜔 ◦ 𝑑. In either case, the irreducible

factorization of 𝜑(𝑇) contains at most one non-palindrome composition. This, along with

Theorem 3.13 implies that [𝜑(𝑇)]L = {𝜑(𝑇), 𝜑(𝑇)∗}. This completes the proof. ■

We believe that further generalizations of Lemma 3.16 might hold for other classes of

trees. The future prospects in this direction are discussed in Chapter 7
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CHAPTER 4

TUTTE POLYNOMIAL OF DIRECTED GRAPHS

In this chapter, we study the 𝐵-polynomial introduced by Awan and Bernardi, which

is a digraph analogue of the Tutte Polynomial. We provide an affirmative answer to

the question raised by Awan and Bernardi in [7]; does the 𝐵-polynomial of a digraph

determine whether the digraph is a symmetrization of some graph or not?

4.1 𝐵-POLYNOMIAL

We begin by recalling the Tutte polynomial and the Potts polynomial with respect to

graphs. The Tutte polynomial of graphs, originally defined by W. Tutte is a universal

object for the polynomials that satisfy deletion-contraction relation. Formally, all graph

polynomials that are multiplicative with respect to disjoint union and admit a deletion-

contraction reduction, can be expressed as a certain evaluation of the Tutte polynomial.

The Tutte polynomial coincides with the rank generating function of Whitney, introduced

in [51] and therefore admits an edge subset-sum expansion.

Definition 4.1 (Tutte Polynomial). For a graph 𝐺 (𝑉, 𝐸), the Tutte polynomial of 𝐺 is

defined as

𝑇𝐺 (𝑥, 𝑦) =
∑︁
𝐹⊆𝐸
(𝑥 − 1)𝜅(𝐺 [𝐹])−𝜅(𝐺) (𝑦 − 1) |𝑆 |−𝜅(𝐺 [𝐹])+|𝑉 |,

where 𝜅(𝐺 [𝐹]) denotes the number of connected components in the spanning subgraph

𝐺 [𝐹].

A detailed exposition of the Tutte polynomial can be found in [16, 28].

In [19], Fortuin and Kasteleyn showed that the following Potts model (or polynomial)

[38] is an evaluation of the Tutte polynomial [49].

Definition 4.2 ([7]). For a graph 𝐺 (𝑉, 𝐸), the Potts polynomial 𝑃(𝑥, 𝑡) is a bivariate



(a) 𝐷 (b) 𝐷′ (c) 𝐷′′

Figure 4.1: Digraphs

polynomial, such that for every positive integer 𝑘 ,

𝑃(𝑘, 𝑡) =
∑︁

𝑓 : 𝑉→[𝑘]
𝑡 | 𝑓

≠ |

where 𝑓 ≠ is the collection of edges whose endpoints are monochromatic under 𝑓 .

The generalization of the Tutte polynomial to digraph uses above Potts’s polynomial as

an intermediary.

Definition 4.3 ([7, Theorem 3.1]). For a digraph 𝐷 (𝑉, 𝐴), the 𝐵-polynomial 𝐵𝐷 (𝑥, 𝑦, 𝑧)

is the unique trivariate polynomial, such that for every positive integer 𝑘 ,

𝐵𝐷 (𝑘, 𝑦, 𝑧) =
∑︁

𝑓 :𝑉→[𝑘]
𝑦asc( 𝑓 )𝑧dsc( 𝑓 ) ,

where [𝑘] B {1, 2, . . . , 𝑘} and asc( 𝑓 ) (resp. dsc( 𝑓 )) denotes the number of arcs 𝑢𝑣 in

𝐴 such that 𝑓 (𝑢) < 𝑓 (𝑣) (resp. 𝑓 (𝑢) > 𝑓 (𝑣)).

The 𝐵-polynomial admits the following expansion in the binomial basis,

𝐵𝐷 (𝑥, 𝑦, 𝑧) =
|𝑉 |∑︁
𝑝=1

(
𝑥

𝑝

) ©­«
∑︁

𝑔∈Surj(𝑉,𝑝)
𝑦asc(𝑔)𝑧dsc(𝑔)ª®¬ , (4.1)

where Surj(𝑉, 𝑝) is the collection of surjective colorings from 𝑉 to [𝑝].

Example 4.4. The 𝐵-polynomials of the digraphs in Figure 4.1 are

𝐵𝐷 (𝑥, 𝑦, 𝑧) =
(
𝑞

1

)
+

(
𝑞

2

)
(2𝑦 + 2𝑦𝑧 + 2𝑧) +

(
𝑞

3

)
(𝑦2 + 4𝑦𝑧 + 𝑧2),

𝐵𝐷′ (𝑥, 𝑦, 𝑧) =
(
𝑞

1

)
+

(
𝑞

2

)
(6𝑦𝑧) +

(
𝑞

3

)
(3𝑦𝑧2 + 3𝑦2𝑧),

𝐵𝐷′′ (𝑥, 𝑦, 𝑧) =
(
𝑞

1

)
+

(
𝑞

2

)
(2𝑦𝑧 + 2𝑦2𝑧 + 2𝑦𝑧2) +

(
𝑞

3

)
(𝑦3𝑧 + 4𝑦2𝑧2 + 𝑦𝑧3).
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Let 𝐺
↔

be the graph obtained by replacing every edge in 𝐺 with a pair of opposite arcs.

The digraph 𝐺
↔

is called as symmetrization of the graph 𝐺. It is straightforward to see

that

𝑃𝐺 (𝑥, 𝑦𝑧) = 𝐵
𝐺
↔(𝑥, 𝑦, 𝑧). (4.2)

Further, the Tutte polynomial and Potts polynomial satisfy the following [16, Theorem

9.6.6]:

𝑇𝐺 (𝑥, 𝑦) =
𝑦 |𝐸 |

(𝑦 − 1) |𝑉 | (𝑥 − 1)𝜅(𝐺)
𝑃𝐺 ((𝑥 − 1) (𝑦 − 1), 1

𝑦
). (4.3)

Combining (4.2) and (4.3), we obtain an equivalence between the Tutte polynomial of a

graph 𝐺 and the 𝐵-polynomial of the digraph 𝐺
↔

.

In what follows, we denote the arc (𝑢, 𝑣) by 𝑢𝑣 for the simplicity of writing.

4.2 B-POLYNOMIAL AND SYMMETRIC DIGRAPHS

In this section, we address an open question posed in [7] regarding the identification of

digraphs obtained by symmetrization. For any graph 𝐺, it follows from (4.2) that the

𝐵-polynomial of a digraph 𝐺
↔

can be expressed in terms of variables 𝑥 and 𝑦𝑧. Awan

and Bernardi raised the question of whether the converse holds true.

Question 4.5 ([7, Question 10.3]). Is it true that 𝐵𝐷 (𝑥, 𝑦, 𝑧) is a function of 𝑥 and 𝑦𝑧 if

and only if 𝐷 is a symmetrization of some graph 𝐺?

In Theorem 4.6, we prove that the answer to the above question is in the affirmative. In

other words, we establish that the 𝐵-polynomial differentiates the classes of digraphs

obtained through symmetrization, from all other digraphs.

Theorem 4.6. A digraph 𝐷 is a symmetrization of some undirected graph 𝐺 if and only

if its 𝐵-polynomial is a function of 𝑥 and 𝑦𝑧.

Prior to the proof of aforementioned theorem, we present a subset-sum expansion for

𝐵𝐷 (𝑥, 𝑦, 𝑧). This expansion is derived through the repeated application of following
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𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝐷 (𝑉, 𝐴)

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝐷 (𝑉, 𝐴′)

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝐷 (𝑉, 𝐴′′)

Figure 4.2: Partition of the arc set 𝐴 into arc sets 𝐴′ = {𝑣1𝑣4, 𝑣3𝑣2, 2 · 𝑣4𝑣5, 𝑣5𝑣2, 𝑣6𝑣2}
and 𝐴′′ =

{
{𝑣1𝑣2, 𝑣2𝑣1}, {𝑣1𝑣4, 𝑣4𝑣1}, 2 · {𝑣5𝑣6, 𝑣6𝑣5}

}
.

recurrence relation concerning opposite arcs proved in [7, Lemma 4.1]. For a digraph

𝐷 (𝑉, 𝐴), and pair of opposite arcs 𝑒 = {𝑢𝑣, 𝑣𝑢} in 𝐴,

𝐵𝐷 (𝑥, 𝑦, 𝑧) = (𝑦𝑧)𝐵𝐷\𝑒 (𝑥, 𝑦, 𝑧) + (1 − 𝑦𝑧)𝐵𝐷/𝑒 (𝑥, 𝑦, 𝑧). (4.4)

Let 𝐴 = 𝐴′ ⊔ 𝐴′′ be a partition of the arc set 𝐴 such that 𝐴′′ is expressible as a disjoint

union of opposite arc pairs {𝑢𝑣, 𝑣𝑢}, and 𝐴′ consists of arcs 𝑢𝑣 such that the opposite

arc 𝑣𝑢 does not belong to 𝐴′ (see Figure 4.2). The following proposition presents a

subset-sum expansion of 𝐵-polynomial with respect to the set 𝐴′′.

Proposition 4.7. For digraph 𝐷 (𝑉, 𝐴), we have

𝐵𝐷 (𝑥, 𝑦, 𝑧) =
∑︁

𝑅⊔𝑆=𝐴′′
(𝑦𝑧) |𝑅 | (1 − 𝑦𝑧) |𝑆 |𝐵𝐷\𝑅/𝑆 (𝑥, 𝑦, 𝑧), (4.5)

where 𝐴′′ is the set of doubletons containing a pair of opposite arcs, and 𝐷/𝑆\𝑅 is

the digraph obtained by deleting and contracting the pair of opposite arcs in 𝑅 and 𝑆,

respectively.

Proof. The proof mainly follows from (4.4) and induction on |𝐴′′|. The base case

|𝐴′′| = 1 follows from (4.4). Assume the result for all proper subsets of 𝐴′′. For a pair of

opposite arcs 𝑒 = {𝑢𝑣, 𝑣𝑢} ∈ 𝐴′′, we have the following:

𝐵𝐷 (𝑥, 𝑦, 𝑧) = (𝑦𝑧)𝐵𝐷\𝑒 (𝑥, 𝑦, 𝑧) + (1 − 𝑦𝑧)𝐵𝐷/𝑒 (𝑥, 𝑦, 𝑧)

= (𝑦𝑧)
∑︁

𝑅⊔𝑆=𝐴′′\𝑒
(𝑦𝑧) |𝑅 | (1 − 𝑦𝑧) |𝑆 |𝐵𝐷\(𝑅∪𝑒)/𝑆 (𝑥, 𝑦, 𝑧)
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+ (1 − 𝑦𝑧)
∑︁

𝑅⊔𝑆=𝐴′′\𝑒
(𝑦𝑧) |𝑅 | (1 − 𝑦𝑧) |𝑆 |𝐵𝐷\𝑅/(𝑆∪𝑒) (𝑥, 𝑦, 𝑧)

=
∑︁

𝑅⊔𝑆=𝐴′′\𝑒
(𝑦𝑧) |𝑅∪𝑒 | (1 − 𝑦𝑧) |𝑆 |𝐵𝐷\(𝑅∪𝑒)/𝑆 (𝑥, 𝑦, 𝑧)

+
∑︁

𝑅⊔𝑆=𝐴′′\𝑒
(𝑦𝑧) |𝑅 | (1 − 𝑦𝑧) |𝑆∪𝑒 |𝐵𝐷\𝑅/(𝑆∪𝑒) (𝑥, 𝑦, 𝑧)

=
∑︁

𝑅⊔𝑆=𝐴′′
(𝑦𝑧) |𝑅 | (1 − 𝑦𝑧) |𝑆 |𝐵𝐷\𝑅/𝑆 (𝑥, 𝑦, 𝑧).

The second line in the above equality follows from the induction hypothesis. In the third

line, the two summations are over the subset-sum wherein the pair 𝑒 is deleted in the

former and contracted in the latter. This observation implies the last line of the equation,

which completes the proof. ■

We now proceed to the proof of Theorem 4.6. The main idea of the proof involves

eliminating pair of opposite arcs using the proposition mentioned above and extract the

highest degree term of the 𝐵-polynomial.

Proof of Theorem 4.6. (⇐) We prove that if a digraph 𝐷 (𝑉, 𝐴) is not a symmetrization

of any undirected graph 𝐺, then its 𝐵-polynomial does not lie in Q[𝑥, 𝑦𝑧]. We treat

𝐵𝐷 (𝑥, 𝑦, 𝑧) as a polynomial over 𝑥 with coefficients in ringQ[𝑦, 𝑧]. From (4.1), it follows

that the largest exponent of 𝑥 in 𝐵𝐷 (𝑥, 𝑦, 𝑧) is equal to the number of vertices of 𝐷. Since

contraction of arcs reduces the number of vertices, the largest exponent 𝑥 |𝑉 | appears only

in the summand where no pair of opposite arcs is contracted, that is, when 𝑅 = 𝐴′′ in

(4.5). This leads to the following equality.[(
𝑥

|𝑉 |

)]
𝐵𝐷 (𝑥, 𝑦, 𝑧) =

[(
𝑥

|𝑉 |

)]
(𝑦𝑧) |𝐴′′ |𝐵𝐷\𝐴′′ (𝑥, 𝑦, 𝑧)

= (𝑦𝑧) |𝐴′′ |
∑︁

𝑔∈Surj(𝑉,|𝑉 |)
𝑦asc𝐴′ (𝑔)𝑧dsc𝐴′ (𝑔) .

(4.6)

This implies that the leading coefficient of the 𝐵-polynomial of 𝐷 is (𝑦𝑧) |𝐴′′ | times the

leading coefficient of 𝐷 (𝑉, 𝐴′). Hence it suffices to prove the existence of a |𝑉 |-coloring

of 𝐷 (𝑉, 𝐴′) with distinct number of ascents and descents. Since 𝐷 ≠
↔
𝐺, the set of
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1 3 5

2 4 6

(a) A 6-coloring 𝑓 having exactly 3
ascents and 3 descents.

1 3 6

2 4 5

(b) A 6-coloring 𝑔 obtained from 𝑓 by
reassigning colorings 5 and 6.

Figure 4.3: 6-colorings of digraph 𝐷 (𝑉, 𝐴′), with blue and red colored arcs depicting
ascents and descents of the colorings.

non-symmetric arcs 𝐴′ is non-empty. Let 𝑢𝑣 ∈ 𝐴′ and 𝑓 be any surjective |𝑉 |-coloring

such that 𝑓 (𝑢) = |𝑉 | − 1 and 𝑓 (𝑣) = |𝑉 |. If the number of ascents and descents of 𝑓

are distinct, we are done. Suppose to the contrary that asc( 𝑓 ) = dsc( 𝑓 ). We define the

coloring 𝑔 obtained by interchanging the colors of 𝑢 and 𝑣 under 𝑓 as follows:

𝑔(𝑤) =



|𝑉 | if 𝑤 = 𝑢,

|𝑉 | − 1 if 𝑤 = 𝑣,

𝑓 (𝑤) otherwise.

Let Asc( 𝑓 ) and Dsc( 𝑓 ) respectively denote the multiset of arcs occurring as ascents

and descents under 𝑓 . Note that the set of ascents and descents of 𝑓 and 𝑔 restricted

to 𝐴′ \ {𝑢𝑣} are the same, whereas {𝑢𝑣} = Asc( 𝑓 ) \ Asc(𝑔) = Dsc(𝑔) \ Dsc( 𝑓 ).

This implies that asc(𝑔) = asc( 𝑓 ) − 1 and dsc(𝑔) = dsc( 𝑓 ) + 1, and consequently

asc(𝑔) ≠ dsc(𝑔) (see Figure 4.1). Thus 𝐵𝐷 (𝑥, 𝑦, 𝑧) ∉ Q[𝑥, 𝑦𝑧]. ■

4.3 CONCLUDING REMARKS

After the identification of symmetric digraphs from the 𝐵-polynomial, a natural question

would be to know whether the 𝐵-polynomial distinguishes non-isomorphic digraphs.

However, this is not true. One way to obtain such pairs is by considering reverse digraphs.

For a digraph 𝐷 (𝑉, 𝐴), let rev(𝐷) denote the digraph obtained by reversing all the arcs

of 𝐷. Then, we observe that the 𝐵-polynomials of the digraph 𝐷 and rev(𝐷) are the
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same. For any positive integer 𝑘 , the permutation 𝜎 : [𝑘] → [𝑘] mapping 𝑖 ↦→ 𝑘 − 𝑖 + 1

acts as an involution on Surj(𝑉, 𝑘). Therefore for all 𝑘 ∈ P,

𝐵𝐷 (𝑘, 𝑦, 𝑧) =
∑︁

𝑓 : 𝑉→[𝑘]
𝑦𝑎𝑠𝑐( 𝑓 )𝑧𝑑𝑠𝑐( 𝑓 )

=
∑︁

𝜎◦𝑔 : 𝑉→[𝑘]
𝜎◦𝑔= 𝑓

𝑦𝑎𝑠𝑐( 𝑓 )𝑧𝑑𝑠𝑐( 𝑓 )

=
∑︁

𝑔 : 𝑉→[𝑘]
𝑦𝑑𝑠𝑐(𝑔)𝑧𝑎𝑠𝑐(𝑔)

= 𝐵𝑟𝑒𝑣(𝐷) (𝑘, 𝑦, 𝑧).

(4.7)

The last equality follows from the observation that for any coloring 𝑓 : 𝑉 → [𝑘],

the multiset of ascents and descents satisfy Asc𝐷 ( 𝑓 ) = Dscrev(𝐷) ( 𝑓 ) and Dsc𝐷 ( 𝑓 ) =

Ascrev(𝐷) ( 𝑓 ).

However, the computations using SageMath affirm that for oriented trees up to order 8,

the digraph and its reverse are the only pair of non-isomorphic digraph having the same

𝐵-polynomial. Therefore, investigating the uniqueness of 𝐵-polynomials of digraphs up

to isomorphism and reversals is an interesting question worth exploring.

Question 4.8. Does the 𝐵-polynomial distinguish acyclic digraphs up to isomorphism

and reverses?
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CHAPTER 5

DISTINGUISHING AND RECONSTRUCTING
DIRECTED GRAPHS

The digraph polynomials and functions arising through the colorings are invariants

that encode various statistics associated with the digraphs. One of the most sought-

after problems with respect to these digraph invariants is the following: can these

invariants uniquely determine the digraphs? If not, which classes of digraphs are

distinguishable by these invariants. These questions have been investigated for various

invariants [34, 24, 52, 29, 6], and are to some extent digraph analogues of Stanley’s tree

isomorphism conjecture.

5.1 QUASISYMMETRIC 𝐵-FUNCTION

From (4.7), it follows that the 𝐵-polynomial is ineffective in distinguishing orientations

of a fixed graph, as there are numerous pairs of non-isomorphic digraphs with the same 𝐵-

polynomial (for example see Figure 5.1(a)). This is one of the motivations for introducing

a quasisymmetric extension of the 𝐵-polynomial and investigation of the classes of

digraphs that can be distinguished by the extension. One may view this phenomenon as

an analogy to the fact that all trees of a fixed order have the same chromatic polynomial,

but the chromatic symmetric function holds potential to distinguish all trees.

We begin with the definition of the quasisymmetric 𝐵-function introduced by Awan and

Bernardi in [7].

Definition 5.1 (Section 8, [7]). Let P be the set of positive integers and x = (𝑥1, 𝑥2, . . . )

denote a list of commutative indeterminates. For a digraph 𝐷 (𝑉, 𝐴), the quasisymmetric



𝐵-function is defined as

𝐵𝐷 (x; 𝑦, 𝑧) =
∑︁

𝑓 : 𝑉→P

(
𝑥
| 𝑓 −1 (1) |
1 𝑥

| 𝑓 −1 (2) |
2 𝑥

| 𝑓 −1 (3) |
3 · · ·

)
𝑦asc( 𝑓 )𝑧dsc( 𝑓 ) . (5.1)

We now show that the above function is indeed quasisymmetric. For any fixed 𝑘-tuple

𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑘 ) ∈ P𝑘 and 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 , let 𝐹𝛿
𝑖1,...,𝑖𝑘

denote the set of P-colorings

corresponding to monomial 𝑥𝛿1
𝑖1
𝑥
𝛿2
𝑖2
· · · 𝑥𝛿𝑘

𝑖𝑘
to 𝐵𝐷 (x; 𝑦, 𝑧). For any 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 and

𝑗1 < 𝑗2 < · · · < 𝑗𝑘 we have the order-preserving bijections 𝜎 : {𝑖1, 𝑖2, . . . , 𝑖𝑘 } → [𝑘] and

𝜏 : { 𝑗1, 𝑗2, . . . , 𝑗𝑘 } → [𝑘]. This maps induce a bijection from 𝐹𝛿
𝑖1,...,𝑖𝑘

to 𝐹𝛿
𝑗1,..., 𝑗𝑘

wherein

𝑓 ↦→ 𝜏−1◦𝜎◦ 𝑓 . Furthermore, the bijection preserves the number of ascents and descents

of the colorings. This implies that for any 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 and 𝑗1 < 𝑗2 < · · · < 𝑗𝑘 ,

[𝑥𝛿1
𝑖1
𝑥
𝛿2
𝑖2
· · · 𝑥𝛿𝑘

𝑖𝑘
]𝐵𝐷 (x; 𝑦, 𝑧) = [𝑥𝛿1

𝑗1
𝑥
𝛿2
𝑗2
· · · 𝑥𝛿𝑘

𝑗𝑘
]𝐵𝐷 (x; 𝑦, 𝑧).

Recall that for 𝑛 ∈ P, the monomial quasisymmetric functions over all integer

compositions of 𝑛 (see Definition 2.6) form a Q[𝑦, 𝑧]-basis for QSym𝑛
Q[𝑦,𝑧] (x). The

following proposition expresses the quasisymmetric 𝐵-function in the monomial

quasisymmetric basis .

Proposition 5.2 ([7]). For any digraph 𝐷 (𝑉, 𝐴), we have

𝐵𝐷 (x; 𝑦, 𝑧) =
|𝑉 |∑︁
𝑝=1

∑︁
𝑓 ∈Surj(𝑉,𝑝)

𝑀type( 𝑓 )𝑦
asc( 𝑓 )𝑧dsc( 𝑓 ) ,

where type( 𝑓 ) is the tuple ( | 𝑓 −1(1) |, | 𝑓 −1(2) |, . . . , | 𝑓 −1(𝑝) |) called the type of 𝑓 .

We briefly recall that the in-out degree sequence of a digraph (see Section 2.1.2) can

be recovered from its quasisymmetric 𝐵-function. Given a digraph 𝐷 (𝑉, 𝐴) and 𝑣 ∈ 𝑉 ,

consider the coloring 𝑓𝑣 that assigns color 1 to the vertex 𝑣 and color 2 to the remaining

vertices. Observe that every surjective coloring of type (1, |𝑉 | − 1) uniquely corresponds

to a coloring 𝑓𝑣 for some 𝑣 ∈ 𝑉 , and satisfies 𝑦asc( 𝑓𝑣)𝑧dsc( 𝑓𝑣) = 𝑦outdegree of v𝑧indegree of v.
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Therefore, we have

[𝑀(1,|𝑉 |−1)]𝐵𝐷 (x; 𝑦, 𝑧) =
∑︁
𝑣∈𝑉

𝑦asc( 𝑓𝑣)𝑧dsc( 𝑓𝑣) =
∑︁
𝑣∈𝑉

𝑦outdegree of v𝑧indegree of v. (5.2)

For an integer composition 𝛽 of 𝑛, we define the following multisets containing the

monomials of fixed degree corresponding to the surjective colorings.

Mon𝑑 (𝛽) B {𝑦asc( 𝑓 )𝑧dsc( 𝑓 ) | type( 𝑓 ) = 𝛽 and asc( 𝑓 ) + dsc( 𝑓 ) = 𝑑},

Mon(𝛽) B
⋃
𝑑≥0

Mon𝑑 (𝛽).

The above digraph invariant is a quasisymmetric analogue of the following Tutte

symmetric function introduced by Stanley in [44].

Definition 5.3. For a graph 𝐺 (𝑉, 𝐸), the Tutte symmetric function is defined as

𝑇𝐺 (x; 𝑡) =
∑︁
𝑉→P

(
𝑥
| 𝑓 −1 (1) |
1 𝑥

| 𝑓 −1 (2) |
2 𝑥

| 𝑓 −1 (3) |
3 · · ·

)
(1 + 𝑡) | 𝑓 = |,

where 𝑓 = is the multiset of edges whose endpoints are monochromatic under 𝑓 .

It is straightforward to see that for any graph 𝐺 (𝑉, 𝐸),

𝐵
𝐺
↔(x; 𝑦, 𝑧) = (𝑦𝑧) |𝐸 |𝑇𝐺

(
x;

1
𝑦𝑧
− 1

)
. (5.3)

The quasisymmetric 𝐵-function determines other digraph and poset invariants such as

order quasisymmetric function, 𝑃-partition enumerator of naturally labelled posets and

chromatic quasisymmetric function [42, 40].

5.2 BACKGROUND ON CHROMATIC INVARIANTS OF DIGRAPHS

Note that using (5.3), every pair of non-isomorphic graphs with equal Tutte symmetric

functions leads to non-isomorphic digraphs with the same quasisymmetric 𝐵-functions.

Therefore, we are interested in the investigation of the following general question.

Question 5.1 (Question 10.7(i), [7]). Does the quasisymmetric 𝐵-function distinguish
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(a) Non-isomorphic digraphs with the same
chromatic quasisymmetric function.

(b) Digraphs whose corresponding poset have
the same 𝑃-partition enumerator.

Figure 5.1: The pair of digraphs in (a) and (b) have distinct quasisymmetric 𝐵-functions.

acyclic digraphs?

Every acyclic digraph induces a partial order on its vertex-set defined by the reachability.

A canonical way to obtain a poset from an acyclic digraph 𝐷 is by defining a partial

order 𝑢 ⪯ 𝑣 iff there is a directed path from 𝑢 to 𝑣 in 𝐷. Under this correspondence, the

study of distinguishing digraphs and posets by their quasisymmetric functions is closely

related and actively investigated: In [24], it was proven that the order quasisymmetric

function distinguishes rooted trees, which coincides with the class of (N, ⊲⊳)-free naturally

labeled posets. Furthermore, in [29], they demonstrated that all N-free naturally labeled

posets can be distinguished by the 𝑃-partition enumerator. Additionally, in [6], labeled

rooted trees, along with certain weak edges, are distinguished by their (𝑃, 𝜔)-partition

enumerator.

A stronger and somewhat more challenging problem than distinguishing digraphs

is their “reconstruction”. The previously mentioned results focus on distinguishing

non-isomorphic orientations but do not provide a mechanism for their reconstruction.

However, J. Zhou has addressed the reconstruction of rooted trees based on their order

quasisymmetric function in [52].

In this chapter, we primarily focus on the reconstruction of digraphs from their

quasisymmetric 𝐵-functions. Certainly, the quasisymmetric 𝐵-function is a stronger

invariant than the chromatic quasisymmetric function and 𝑃-partition enumerator (see

Figure 5.1). This is because the quasisymmetric 𝐵-function determines certain
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𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

Figure 5.2: Two non-isomorphic oriented paths containing ‘N’, and having the same
in-out degree sequence and height-profile (3, 3, 2).

interesting statistics of a digraph.

A vertex 𝑉 in an acyclic digraph 𝐷 is said to be of height 𝑘 if the length of the

longest directed path ending at 𝑣 is 𝑘 − 1. The height-profile of an acyclic digraph

𝐷 is a tuple (ℎ0, ℎ1, . . . , ℎ𝑟−1), where ℎ𝑘 is the number of vertices in 𝐷 of height 𝑘 .

The quasisymmetric 𝐵-function encodes the in-out degree sequence and height-profile

of acyclic digraphs. However, these quantities are not sufficient to distinguish the

orientations of even simple graphs such as paths. For example, Figure 5.2 depicts non-

isomorphic orientations of paths with the same in-out degree sequence and height-profile.

Therefore the problem of distinguishing orientations of path by quasisymmetric functions

is still open.

To the best of our knowledge, Corollary 5.2 along with Theorems 5.11 and 5.12 mark the

first instance of reconstructing digraphs containing ‘N’ using a quasisymmetric function.

We adopt certain change in notations for brevity. For a graph𝐺 (𝑉, 𝐸), we denote an edge

incident to vertices 𝑢 and 𝑣 by {𝑢, 𝑣}. On the other hand, an arc in a digraph 𝐷 (𝑉, 𝐴)

that is outgoing from 𝑢 and incoming to 𝑣 is denoted by 𝑢𝑣. The underlying graph of 𝐷,

denoted as 𝐷, is the graph obtained by replacing every arc 𝑢𝑣 in 𝐷 with the edge {𝑢, 𝑣}.

Henceforth, whenever we refer to an edge in a digraph, we mean the corresponding edge

in the underlying graph.

Recall that for a positive integer 𝑝 and a graph 𝐺 (𝑉, 𝐸) (or 𝐷 (𝑉, 𝐴)), a 𝑝-coloring of 𝐺
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is a mapping that assigns a color from the set [𝑝] to each vertex in 𝑉 . An edge (or arc)

is said to be non-monochromatic under a coloring if its endpoints are assigned distinct

colors.

5.3 DISTINGUISHING ORIENTATIONS OF CATERPILLARS

We show that semi-symmetric orientations (see Definition 5.10) of certain caterpillars can

be reconstructed from their quasisymmetric 𝐵-functions. A tree is said to be a caterpillar

if all the vertices of degree at least two induce a (unique) path, which we call as the spine

of the caterpillar. We consider the following subclasses of caterpillars.

Definition 5.4. (a) A proper caterpillar is a caterpillar that has every vertex of the
spine adjacent to at least one pendant vertex.

(b) A proper caterpillar is said to be an asymmetric proper caterpillar if the number
of pendant vertices adjacent to each spine vertex is distinct.

(c) A proper caterpillar is said to be palindromic if the associated integer composition
is a palindrome.

The class of caterpillars has been shown to be reconstructible from chromatic symmetric

functions [3, 30, 33]. Since the chromatic symmetric function of the underlying

digraph is determined by the quasisymmetric 𝐵-function, it is sufficient to focus on the

reconstruction problem of the orientations while fixing the underlying caterpillar. For

proper caterpillars, we establish in Theorem 5.11 that their semi-symmetric orientations

are reconstructible. Implementing the methods involved in reconstruction of the spine, we

are able to reconstruct all the orientations of paths up to isomorphism. Using this and the

fact that in-out degree sequence is extractible from the quasisymmetric 𝐵-functions, we

prove the reconstruction of all orientations of asymmetric proper caterpillars in Theorem

5.12.

For proper caterpillars, we establish in Theorem 5.11 that the semi-symmetric orientations

of proper caterpillars are reconstructible. Implementing the methods involved in the
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reconstruction of the spine, we are able to reconstruct all the orientations of paths

up to isomorphism. Using this and the fact that in-out degree sequence is extractible

from the quasisymmetric 𝐵-functions, we prove the reconstruction of all orientations of

asymmetric proper caterpillars in Theorem 5.12.

An equivalent characterization of a caterpillar is that it is a tree where the deletion

of all its pendant vertices results in a path. This resultant path is in fact the spine of

the caterpillar. For a caterpillar 𝐶, we denote its spine by ⟨𝑣1, 𝑣2, . . . , 𝑣ℓ⟩ that starts

at 𝑣1 and ends at 𝑣ℓ. Let 𝑢𝑘1, 𝑢𝑘2, . . . denote the pendant vertices adjacent to 𝑣𝑘 . Let

Comp(𝐶) be the unique integer composition (𝛼1, 𝛼2, . . . , 𝛼ℓ) associated to 𝐶 such that

for 𝑖 = 1, 2, . . . , ℓ, the spine vertex 𝑣𝑖 has exactly 𝛼𝑖 − 1 many neighbors with degree 1.

Note that the integer compositions associated with isomorphic caterpillars are either the

same or reverses of each other.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

𝑢11 𝑢21 𝑢31 𝑢32 𝑢41 𝑢42 𝑢43 𝑢51 𝑢61 𝑢62 𝑢71

Figure 5.3: An oriented proper caterpillar with associated composition (2, 2, 3, 4, 2, 3, 2).

For an oriented caterpillar 𝐶
→

and its spine vertex 𝑣𝑘 , let 𝑂𝑘 and 𝐼𝑘 denote the number of

outgoing and incoming pendant arcs of 𝑣𝑘 . The tuple 𝑃(𝑣𝑘 ) B (𝑂𝑘 , 𝐼𝑘 ) is called as the

pendant vector of the spine vertex 𝑣𝑘 . For instance, the pendant vector of the spine vertex

𝑣4 in Figure 5.3 is (2, 1). Note that any orientation of a fixed caterpillar 𝐶 is uniquely

determined by (a) the orientation of the spine ⟨𝑣1, 𝑣2, . . . , 𝑣ℓ⟩, and (b) the pendant vector

𝑃(𝑣𝑘 ) of each spine vertex 𝑣𝑘 .

For an integer composition 𝛿 ⊨ |𝑉 (𝑇) |, let 𝐹𝑇 (𝛿) denote the set of surjective colorings of

𝑇 having type 𝛿 with exactly ℓ(𝛿) − 1 many non-monochromatic edges. The following

observations enable us to characterize the colorings of trees, their non-monochromatic
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arcs and the corresponding monomials.

Observation 5.5. Let 𝑇 (𝑉, 𝐸) be a tree and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑘 ) be an integer

composition of |𝑉 |. Then

(a) A coloring 𝑓 is in 𝐹𝑇 (𝛽) if and only if the deletion of its non-monochromatic edges
results in 𝑘 many connected components of orders 𝛽1, 𝛽2, . . . , 𝛽𝑘 .

(b) If each component of 𝛽 is greater than 1, then the endpoints of the
non-monochromatic edges of colorings in 𝐹𝑇 (𝛽) must have degree greater than 1
in 𝑇 . Particularly for caterpillars, the non-monochromatic edges of such colorings
must lie on the spine.

The above observations follow from the fact that every edge of a tree is a cut-edge.

We begin with the classification of the spine edges of all caterpillars according to the

partial sums of the corresponding integer compositions. Let 𝐶 (𝑉, 𝐸) be a caterpillar

with associated composition Comp(𝐶) = (𝛼1, 𝛼2, . . . , 𝛼ℓ). For 𝑝 = 1, 2, . . . , ℓ, let

𝐿𝑝 B
∑𝑝

𝑖=1 𝛼𝑖 and 𝑅𝑝 B
∑𝑝

𝑖=1 𝛼ℓ−𝑖+1 be the left and right justified partial sums of

Comp(𝐶), respectively. We now define the bilateral edges based on the equality of these

partial sums. Let

B =
{
(𝑝, 𝑝′) ∈ [ℓ] × [ℓ]

�� 𝐿𝑝 = 𝑅𝑝′ and 𝐿𝑝, 𝑅𝑝′ ≤ ⌊|𝑉 |/2⌋
}
.

For (𝑝, 𝑝′) ∈ B, let 𝐵𝑝,𝑝′ denote the set of edges
{
{𝑣𝑝, 𝑣𝑝+1}, {𝑣ℓ−𝑝′ , 𝑣ℓ−𝑝′+1}

}
. We call

𝐵𝑝,𝑝′ as a bilateral set, and a spine edge is said to be bilateral if it belongs to 𝐵𝑝,𝑝′ for

some 1 ≤ 𝑝, 𝑝′ ≤ ℓ. Note that |𝐵𝑝,𝑝′ | is either one or two, and the former scenario

occurs if and only if |𝑉 | is even and 𝐿𝑝 = 𝑅𝑝′ = |𝑉 |/2. For an oriented caterpillar, we

denominate the orientation of the bilateral set 𝐵𝑝,𝑝′ according to its bilateral edges as

follows:

Definition 5.6. Let
→
𝐶 (𝑉, 𝐸) be an oriented caterpillar. For 2 ≤ 𝐿𝑝 = 𝑅𝑝′ ≤ ⌊|𝑉 |/2⌋,

the bilateral set 𝐵𝑝,𝑝′ admitting the orientation

•
{
𝑣𝑝𝑣𝑝+1, 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

}
are called right directed (Figure 5.4:(i)),
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𝑣𝑝 𝑣𝑝+1 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

(a)
{
𝑣𝑝𝑣𝑝+1, 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

} 𝑣𝑝 𝑣𝑝+1 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

(b)
{
𝑣𝑝+1𝑣𝑝, 𝑣ℓ−𝑝′+1𝑣ℓ−𝑝′

}
𝑣𝑝 𝑣𝑝+1 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

(c)
{
𝑣𝑝𝑣𝑝+1, 𝑣ℓ−𝑝′+1𝑣ℓ−𝑝′

} 𝑣𝑝 𝑣𝑝+1 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

(d)
{
𝑣𝑝+1𝑣𝑝, 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

}
Figure 5.4: Orientations of the bilateral set 𝐵𝑝,𝑝′ .

•
{
𝑣𝑝+1𝑣𝑝, 𝑣ℓ−𝑝′+1𝑣ℓ−𝑝′

}
are called left directed (Figure 5.4:(ii)),

•
{
𝑣𝑝𝑣𝑝+1, 𝑣ℓ−𝑝′+1𝑣ℓ−𝑝′

}
is called inward directed (Figure 5.4:(iii)),

•
{
𝑣𝑝+1𝑣𝑝, 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1

}
is called outward directed (Figure 5.4:(iv)).

A bilateral set is called uni-directed if it is either left directed or right directed. For

example, the bilateral sets 𝐵1,1 and 𝐵3,3 in Figure 5.3 are inward and right directed,

respectively.

The following proposition asserts that the orientation of the spine arcs can be read from

the multiset Mon1(𝑠, |𝑉 | − 𝑠) up to uni-direction of bilateral sets.

Proposition 5.7. Let
→
𝐶 (𝑉, 𝐸) be an oriented caterpillar with

Comp(𝐶) = (𝛼1, 𝛼2, . . . , 𝛼ℓ). For 𝐿𝑝, 𝑅𝑝′ ≤ ⌊|𝑉 |/2⌋ such that the arcs with endpoints

{𝑣𝑝, 𝑣𝑝+1} and {𝑣ℓ−𝑝′ , 𝑣ℓ−𝑝′+1} are not bilateral, the multiset

Mon1(𝐿𝑝, |𝑉 | − 𝐿𝑝) =


{𝑦} iff 𝑣𝑝𝑣𝑝+1 ∈ 𝐴,

{𝑧} iff 𝑣𝑝+1𝑣𝑝 ∈ 𝐴.
(5.4)

and

Mon1(𝑅𝑝′ , |𝑉 | − 𝑅𝑝′) =


{𝑦} iff 𝑣ℓ−𝑝′+1𝑣ℓ−𝑝′ ∈ 𝐴,

{𝑧} iff 𝑣ℓ−𝑝′𝑣ℓ−𝑝′+1 ∈ 𝐴.
(5.5)
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For the bilateral set 𝐵𝑝,𝑝′ with 𝑠 = 𝐿𝑝 = 𝑅𝑝′ , we have

Mon1(𝑠, |𝑉 | − 𝑠) =



{𝑦, 𝑧} iff 𝐵𝑝,𝑝′ is uni-directed,

{𝑦, 𝑦} iff 𝐵𝑝,𝑝′ is inward directed,

{𝑧, 𝑧} iff 𝐵𝑝,𝑝′ is outward directed.

(5.6)

Proof. According to Observation 5.5(b), the non-monochromatic edges of the colorings

from 𝐹𝐶 (𝐿𝑝, |𝑉 | − 𝐿𝑝) and 𝐹𝐶 (𝑅𝑝′ , |𝑉 | − 𝑅𝑝′) are {𝑣𝑝, 𝑣𝑝+1} and {𝑣ℓ−𝑝′ , 𝑣ℓ−𝑝′+1},

respectively. The coloring(s) in 𝐹𝐶 (𝐿𝑝, |𝑉 | − 𝐿𝑝) (resp. 𝐹𝐶 (𝑅𝑝′ , |𝑉 | − 𝑅𝑝′)) assigns

color 1 to the vertex 𝑣𝑝 (resp. 𝑣ℓ−𝑝′+1). Therefore, the orientations of the

non-monochromatic edges correspond to the asserted multisets in (5.4), (5.5) and

(5.6). ■

This leads us to the following corollary.

Corollary 5.8. Let 𝐶
→
(𝑉, 𝐸) be an oriented caterpillar. If none of the bilateral sets

𝐵𝑝,𝑝′ of 𝐶
→

are uni-directed, then the orientation of the spine can be determined by the

quasisymmetric 𝐵-function.

It is worth noting that the information of the non-uni-directed bilateral sets, along with

the already known digraph-statistics from the quasisymmetric 𝐵-function like in-out

degree sequence and height-profile are insufficient to distinguish the orientation of the

spine. In fact, there exist non-isomorphic orientations of paths that agree on the above

quantities (see Figure 5.2). Therefore the determination of uni-directed bilateral sets is

crucial and non-trivial. By imposing certain conditions on the underlying caterpillars,

we show that the orientations of the spine including the uni-directed bilateral sets can be

reconstructed from the quasisymmetric 𝐵-function.

5.3.1 Recovering orientation of the spine of proper caterpillars

Recall that a caterpillar is said to be proper if every vertex of the spine is adjacent to

at least one pendant vertex. Equivalently, they are the caterpillars whose associated

compositions have each component of size at least two. The advantage of studying the
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

Figure 5.5: Two non-isomorphic oriented paths having the same non-oriented having the
same in-out degree sequence and height-profile (3, 3, 2).

proper caterpillars over non-proper caterpillars is that the composition corresponding to

proper caterpillars have all parts greater than 1. Therefore the compositions obtained

by adding some consecutive components must also have all parts greater than 1. From

Observation 5.5(b), it follows that the non-monochromatic edges of the colorings of these

type always lie on the spine. This avoids the conflict arising due to the involvement of

the pendant vector while retrieving the spine. With this, we begin with reconstructing

the spine of the proper caterpillars.

For the sake of brevity, we denote the multiset {𝑎𝑖 𝑗 · 𝑦𝑖𝑧 𝑗 | 𝑖, 𝑗 ∈ N} where 𝑎𝑖 𝑗 is the

multiplicity of the monomial 𝑦𝑖𝑧 𝑗 .

Proposition 5.9. The orientation of the spine of oriented proper caterpillars can be

reconstructed from their quasisymmetric 𝐵-functions.

Proof. Let 𝐶
→

be an orientation of a proper caterpillar 𝐶 such that

Comp(𝐶) = (𝛼1, 𝛼2, . . . , 𝛼ℓ) is lexicographically smaller than its reverse. Let 𝜃 be the

least positive integer (if exists) such that 𝐵𝜃,𝜃′ is uni-directed. In the first step of the

proof, we use 𝐵𝜃,𝜃′ as our pivot to determine whether the other bilateral sets are oriented

in the same direction as 𝐵𝜃,𝜃′ or not. In the second step, we aim to determine the

direction of this 𝐵𝜃,𝜃 , which will in turn discern the orientation of every other

uni-directional bilateral set. Let 𝜋 be the least positive integer (if exists) such that the

edge {𝑣𝜋, 𝑣𝜋+1} is not a bilateral edge. The choice of Comp(𝐶) being lexicographically

smaller than its reverse implies 𝐿𝜋 ≤ ⌊|𝑉/2|⌋. Since the orientation of the

non-uni-directed bilateral sets is determined by quasisymmetric 𝐵-function (from
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Proposition 5.7), the orientation of edge {𝑣𝜋, 𝑣𝜋+1} in 𝐶
→

is known. This arc acts as our

pivot in the second step to determine the orientation of the uni-directed bilateral set 𝐵𝜃,𝜃′ .

Any two uni-directed bilateral sets of 𝐶
→

are said to be in unison if either both are left

directed or both are right directed.

(Step I): We proceed by induction on 𝑠 ∈ {𝐿𝑝 | 𝐵𝑝,𝑝′ is uni-directed, 𝑝 ≥ 𝜃, 𝑝′ ≥ 𝜃′}.

Suppose that for all 𝑞 < 𝑝 and 𝑞′ < 𝑝′, we know whether 𝐵𝑞,𝑞′ is in unison with 𝐵𝜃,𝜃′ are

not. To determine the direction of 𝐵𝑝,𝑝′ , we consider the surjective 3-colorings whose

non-monochromatic arcs belong to 𝐵𝑝,𝑝′ or 𝐵𝜃,𝜃′ . In particular, to have{
{𝑣𝜃 , 𝑣𝜃+1}, {𝑣𝑝, 𝑣𝑝+1}

}
or

{
{𝑣ℓ−𝜃′ , 𝑣ℓ−𝜃′+1}, {𝑣ℓ−𝑝′ , 𝑣ℓ−𝑝′+1}

}
. (5.7)

as non-monochromatic edges, the natural choice would be to consider the colorings

such that removal of their non-monochromatic edges results in connected components

of order 𝐿𝜃 , 𝐿𝑝 − 𝐿𝜃 and |𝑉 | − 𝐿𝑝. While doing so, we may encounter some other

colorings in this set. However by induction hypothesis, the orientations of the non-

monochromatic edges of these intermediary colorings are already known. The occurrence

of the intermediary arcs is based on whether 𝐿𝑝 − 𝐿𝜃 occurs as a partial sum of parts of

Comp(𝐶). The proof follows from the case-by-case analysis of the non-monochromatic

arcs of these intermediary colorings. We accomplish this by considering set of colorings

𝐹𝐶 (𝐿𝜃 , 𝐿𝑝 − 𝐿𝜃 , |𝑉 | − 𝐿𝑝) or 𝐹𝐶 (𝐿𝜃 , |𝑉 | − 𝐿𝑝, 𝐿𝑝 − 𝐿𝜃). We show that for each possible

orientation of intermediary arcs, the multisets associated with the unison of 𝐵𝑝,𝑝′ and

𝐵𝜃,𝜃′ differs from the case when they are not in unison. If none of the partial sum of the

parts equal 𝐿𝑝 − 𝐿𝜃 , then

Mon2(𝐿𝜃 , |𝑉 | − 𝐿𝑝, 𝐿𝑝 − 𝐿𝜃) =


{2𝑦𝑧} if 𝐵𝑝,𝑝′ and 𝐵𝜃,𝜃′ are in unison,

{𝑦2, 𝑧2} otherwise.

(Case 1): 𝐿𝑝 − 𝐿𝜃 = 𝐿𝑞 = 𝑅𝑞′ for some 𝑞 ≤ 𝑝 and 𝑞′ ≤ 𝑝′.

The computation of monomials in Mon2(𝐿𝜃 , 𝐿𝑝 − 𝐿𝜃 , |𝑉 | − 𝐿𝑝) and Mon2(𝐿𝜃 , |𝑉 | −
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Colorings Spine vertices corresponding to color classes
𝑣1, . . . , 𝑣𝑖 𝑣𝑖+1, . . . , 𝑣 𝑗 𝑣 𝑗+1, . . . , 𝑣ℓ

𝑔1 1 2 3
𝑓1 1 3 2

𝑣1, . . . , 𝑣𝑖 𝑣𝑖+1, . . . , 𝑣ℓ−𝑘 ′ 𝑣ℓ−𝑘 ′+1, . . . , 𝑣ℓ
𝑔2 1 3 2
𝑓2 1 2 3

𝑣1, . . . , 𝑣𝑘 𝑣𝑘+1, . . . , 𝑣 𝑗 𝑣 𝑗+1, . . . , 𝑣ℓ
𝑔3 2 1 3
𝑓3 3 1 2

𝑣1, . . . , 𝑣𝑘 𝑣𝑘+1, . . . , 𝑣ℓ−𝑖′ 𝑣ℓ−𝑖′+1, . . . , 𝑣ℓ
𝑔4 2 3 1
𝑓4 3 2 1

𝑣1, . . . , 𝑣ℓ− 𝑗 ′ 𝑣ℓ− 𝑗 ′+1, . . . , 𝑣ℓ−𝑘 ′ 𝑣ℓ−𝑘 ′+1, . . . , 𝑣ℓ
𝑔5 3 1 2
𝑓5 2 1 3

𝑣1, . . . , 𝑣ℓ− 𝑗 ′ 𝑣ℓ− 𝑗 ′+1, . . . , 𝑣ℓ−𝑖′ 𝑣ℓ−𝑖′+1, . . . , 𝑣ℓ
𝑔6 3 2 1
𝑓6 2 3 1

Table 5.1: Set of colorings 𝐹𝐶 (L𝑖, L 𝑗 −L𝑖, |𝑉 | − L 𝑗 ) = {𝑔1, 𝑔2, . . . , 𝑔6} and 𝐹𝐶 (𝐿𝑖, |𝑉 | −
𝐿𝑖, 𝐿 𝑗 − 𝐿𝑖) = { 𝑓1, 𝑓2, . . . , 𝑓6} where L𝑖 = R𝑖′ , L 𝑗 = R 𝑗 ′ and L 𝑗 −L𝑖 = L𝑘 =

R𝑘 ′ .
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𝐿𝑝, 𝐿𝑝 − 𝐿𝜃) in accordance with Table 5.1 (where 𝑖 = 𝜃, 𝑗 = 𝑝 and 𝑘 = 𝑞) lead to

the following. In the first three rows of the following computation table, we calculate

the multiset Mon2(𝐿𝜃 , 𝐿𝑝 − 𝐿𝜃 , |𝑉 | − 𝐿𝑝), while the last row represents the multiset

Mon2(𝐿𝜃 , |𝑉 | − 𝐿𝑝, 𝐿𝑝 − 𝐿𝜃).

Orientation of 𝐵𝑞,𝑞′ 𝐵𝑝,𝑝′ is in unison with 𝐵𝜃,𝜃′ 𝐵𝑝,𝑝′ is not in unison with 𝐵𝜃,𝜃′

inward directed {2𝑦2, 2𝑦𝑧, 2𝑧2} {𝑦2, 4𝑦𝑧, 𝑧2}

outward directed {2𝑦2, 2𝑦𝑧, 2𝑧2} {𝑦2, 4𝑦𝑧, 𝑧2}

not in unison with 𝐵𝜃,𝜃′ {3𝑦2, 3𝑧2} {𝑦2, 4𝑦𝑧, 𝑧2}

unison with 𝐵𝜃,𝜃′ {𝑦2, 4𝑦𝑧, 𝑧2} {3𝑦2, 3𝑧2}

(Case 2): Either 𝐿𝑝 − 𝐿𝜃 is equal to 𝐿𝑝 for some 𝑞 ≤ 𝑝, or 𝑅𝑞′ for some 𝑞′ ≤ 𝑝′ (but

not both).

Apart from (5.7), the other non-monochromatic edges of the colorings in 𝐹𝐶 (𝐿𝜃 , |𝑉 | −

𝐿𝑝, 𝐿𝑝 − 𝐿𝜃) are{
{𝑣𝑞, 𝑣𝑞+1}, {𝑣𝑝, 𝑣𝑝+1}

}
,
{
{𝑣𝑞, 𝑣𝑞+1}, {𝑣ℓ−𝜃′ , 𝑣ℓ−𝜃′+1}

}
if 𝐿𝑝 − 𝐿𝜃 = 𝐿𝑞,{

{𝑣ℓ−𝑞′ , 𝑣ℓ−𝑞′+1}, {𝑣𝑝, 𝑣𝑝+1}
}
,
{
{𝑣ℓ−𝑞′ , 𝑣ℓ−𝑞′+1}, {𝑣ℓ−𝜃′ , 𝑣ℓ−𝜃′+1}

}
if 𝐿𝑝 − 𝐿𝜃 = 𝑅𝑞′ .

Therefore, when 𝑣𝑞𝑣𝑞+1 or 𝑣ℓ−𝑞′+1𝑣ℓ−𝑞′ occur in 𝐶
→

, we have

Mon2(𝐿𝜃 , |𝑉 | − 𝐿𝑝, 𝐿𝑝 − 𝐿𝜃) =


{3𝑦𝑧, 𝑧2} if 𝐵𝑝,𝑝′ and 𝐵𝜃,𝜃′ are in unison,

{𝑦2, 𝑦𝑧, 2𝑧2} if 𝐵𝑝,𝑝′ and 𝐵𝜃,𝜃′ are not in unison.

Otherwise if 𝑣𝑞+1𝑣𝑞 or 𝑣ℓ−𝑞′𝑣ℓ−𝑞′+1 occur in 𝐶
→

, we get

Mon2(𝐿𝜃 , |𝑉 | − 𝐿𝑝, 𝐿𝑝 − 𝐿𝜃) =


{𝑦2, 3𝑦𝑧} if 𝐵𝑝,𝑝′ and 𝐵𝜃,𝜃′ are in unison,

{2𝑦2, 𝑦𝑧, 𝑧2} if 𝐵𝑝,𝑝′ and 𝐵𝜃,𝜃′ are not in unison.

Since the multiset associated with the unison of 𝐵𝑝,𝑝′ and 𝐵𝜃,𝜃′ are distinct from the case

when they are not in unison,we conclude that the uni-directed bilateral arcs that are in
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

(a) A semi-symmetric orientation with pivot
𝑣2𝑣1 and uni-directed bilateral sets 𝐵2,1 and
𝐵3,2.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

(b) A semi-symmetric orientation with pivot
𝑣2𝑣3 and uni-directed bilateral sets 𝐵1,1 and
𝐵3,2.

Figure 5.6: Proper caterpillars with associated compositions (a) (2,2,2,2,2,4) and (b)
(2,2,2,2,4,2).

unison with 𝐵𝜃,𝜃′ can be determined from the quasisymmetric 𝐵-function.

Note that if the underlying proper caterpillar 𝐶 is palindromic, then every edge is a

bilateral edge. Therefore, by assuming 𝐵𝜃,𝜃′ being right directed, we are fixing an

orientation from the isomorphism class of 𝐶
→

, and the direction of every other bilateral

set in this orientation can be determined. Thus, if Comp(𝐶) is a palindrome, then

orientation of spine can be reconstructed from (Step I). We now proceed to determine

the direction of 𝐵𝜃,𝜃′ when the underlying composition is not a palindrome.

(Step II): The direction of 𝐵𝜃,𝜃′ is discerned by comparing it with the orientation of

the pivot non-bilateral edge {𝑣𝜋, 𝑣𝜋+1}. Note that the edge {𝑣𝜋, 𝑣𝜋+1} may occur either

before or after the bilateral edge {𝑣𝜃 , 𝑣𝜃+1} on the spine (see Figure 5.6), that is, either

𝜋 < 𝜃 (in the former scenario) or 𝜋 > 𝜃 (in the latter scenario).

For 𝜋 < 𝜃, the computations are based on the Table 5.1 with 𝑖 = 𝜋, 𝑗 = 𝜃 and 𝑘 = 𝑞.

(Case 1.a): Suppose 𝜋 < 𝜃, and 𝐿𝜃 − 𝐿𝜋 is not a partial sum of components of Comp(𝐶).

The multiset Mon2(𝐿𝜋, |𝑉 | − 𝐿𝜃 , 𝐿𝜃 − 𝐿𝜋) contains a unique monomial contributed by

the coloring with non-monochromatic edge set
{
{𝑣𝜋, 𝑣𝜋+1}, {𝑣𝜃 , 𝑣𝜃+1}

}
. From Table 5.1,
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we conclude that

Mon2(𝐿𝜋, |𝑉 | − 𝐿𝜃 , 𝐿𝜃 − 𝐿𝜋) =



{𝑦2} if 𝑣𝜋𝑣𝜋+1 ∈ 𝐴 and 𝐵𝜃,𝜃′ is right directed,

{𝑧2} if 𝑣𝜋+1𝑣𝜋 ∈ 𝐴 and 𝐵𝜃,𝜃′ is left directed,

{𝑦𝑧} otherwise.

(Case 1.b): Let 𝐿𝜃 − 𝐿𝜋 be either 𝐿𝑞 or 𝑅𝑞′ (but not both) for some 1 ≤ 𝑞 ≤ 𝜃 and

1 ≤ 𝑞′ ≤ 𝜃′.

The distinctness of the multiset Mon2(𝐿𝜋, |𝑉 | −𝐿𝜃 , 𝐿𝜃 −𝐿𝜋) is exhibited in the respective

scenarios by the following:

𝑣𝜋𝑣𝜋+1 𝑣𝜋+1𝑣𝜋

right directed left directed right directed left directed

𝑣𝑞𝑣𝑞+1 {2𝑦𝑧} {2𝑦2} {𝑦𝑧, 𝑧2} {𝑦2, 𝑦𝑧}

𝑣𝑞+1𝑣𝑞 {𝑦𝑧, 𝑧2} {𝑦2, 𝑦𝑧} {2𝑧2} {2𝑦𝑧}

𝑣ℓ−𝑞′𝑣ℓ−𝑞′+1 {𝑦2, 2𝑦𝑧} {3𝑦2} {2𝑦𝑧, 𝑧2} {𝑦2, 2𝑦𝑧}

𝑣ℓ−𝑞′+1𝑣ℓ−𝑞′ {2𝑦𝑧, 𝑧2} {𝑦2, 2𝑦𝑧} {3𝑧2} {2𝑦𝑧, 𝑧2}

𝐵𝜃,𝜃′

where the first two rows and the last two rows corresponds to 𝐿𝜃 − 𝐿𝜋 being 𝐿𝑞 or 𝑅𝑞′ ,

respectively.

(Case 1.c): Let 𝐿𝜃 − 𝐿𝜋 = 𝐿𝑞 = 𝑅𝑞′ for some 1 ≤ 𝑞 ≤ 𝜃 and 1 ≤ 𝑞′ ≤ 𝜃′.

By the choice of 𝐵𝜃,𝜃′ (least uni-directed bilateral set), the bilateral sets 𝐵𝑞,𝑞′ must be

either inward directed or outward directed. The monomials computed using Table 5.1

gives the following:

𝑣𝜋𝑣𝜋+1 𝑣𝜋+1𝑣𝜋

right directed left directed right directed left directed

inward directed {3𝑦𝑧, 𝑧2} {𝑦2, 2𝑦𝑧, 𝑧2} {𝑦𝑧, 3𝑧2} {2𝑦𝑧, 2𝑧2}

outward directed {2𝑦2, 2𝑦𝑧} {3𝑦2, 𝑦𝑧} {2𝑦𝑧, 2𝑧2} {𝑦2, 3𝑦𝑧}

𝐵𝑞,𝑞′
𝐵𝜃,𝜃′
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where the the multiset Mon2(𝐿𝜃 , |𝑉 | − 𝐿𝜋, 𝐿𝜋 − 𝐿𝜃) is computed corresponding to the

orientation of 𝐵𝑞,𝑞′ , 𝐵𝜃,𝜃′ and {𝑣𝜋, 𝑣𝜋+1}. This concludes that the direction of 𝐵𝜃,𝜃′ can

be reconstructed when the pivot arc {𝑣𝜋, 𝑣𝜋+1} occurs before the bilateral set 𝐵𝜃,𝜃′ .

We now proceed with the final case, that is 𝜃 < 𝜋. The monomials are computed using

Table 5.1 with 𝑖 = 𝜃, 𝑗 = 𝜋 and 𝑘 = 𝑞.

(Case 2.a): If 𝐿𝜋 − 𝐿𝜃 is not equal any partial sum, then the multisets Mon2(𝐿𝜃 , |𝑉 | −

𝐿𝜋, 𝐿𝜋 − 𝐿𝜃) is the same as (Case 1.a) with the roles of 𝜃 and 𝜋 interchanged.

(Case 2.b): Suppose 𝐿𝜋 − 𝐿𝜃 = 𝐿𝑞 = 𝑅𝑞′ for some 1 ≤ 𝑞 ≤ 𝜋 and 1 ≤ 𝑞′ ≤ 𝜋′. We

resolve this case pertaining to the orientation of the bilateral set 𝐵𝑞,𝑞′ . The colorings

from the first four rows of Table 5.1 contribute the monomials occurring in the multisets.

𝑣𝜋𝑣𝜋+1 𝑣𝜋+1𝑣𝜋

right directed left directed right directed left directed

inward directed {3𝑦𝑧, 𝑧2} {2𝑦𝑧, 2𝑧2} {𝑦2, 𝑦𝑧, 2𝑧2} {2𝑦𝑧, 2𝑧2}

outward directed {2𝑦2, 2𝑦𝑧} {2𝑦2, 𝑦𝑧, 𝑧2} {2𝑦2, 2𝑦𝑧} {𝑦2, 3𝑦𝑧}

unison with 𝐵𝜃,𝜃′ {𝑦2, 2𝑦𝑧, 𝑧2} {2𝑦2, 2𝑧2} {2𝑦2, 𝑦𝑧, 𝑧2} {𝑦2, 2𝑦𝑧, 𝑧2}

not in unison with 𝐵𝜃,𝜃′ {3𝑦2, 𝑧2} {𝑦2, 2𝑦𝑧, 𝑧2} {𝑦2, 2𝑦𝑧, 𝑧2} {𝑦2, 3𝑧2}

𝐵𝑞,𝑞′
𝐵𝜃,𝜃′

where the multiset Mon2(𝐿𝜃 , |𝑉 | − 𝐿𝜋, 𝐿𝜋 − 𝐿𝜃) is computed for the first three rows, and

the last row corresponds to the multiset Mon2(𝐿𝜃 , 𝐿𝜋 − 𝐿𝜃 , |𝑉 | − 𝐿𝜋).

For fixed orientations of {𝑣𝜋, 𝑣𝜋+1} and 𝐵𝑞,𝑞′ , the multisets corresponding to 𝐵𝜃,𝜃′ being

right directed and left directed are distinct. Therefore the orientation of 𝐵𝜃,𝜃′ can be

reconstructed. This completes the proof. ■

The following corollary is an immediate consequence of the above proposition.

Corollary 5.2. The orientations of paths can be reconstructed from their quasisymmetric
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𝐵-function up to isomorphism.

Proof. We associate the integer composition (1, 1, . . . , 1) of length |𝑉 | to the oriented

path 𝑃
→
(𝑉, 𝐴). The orientations of the bilateral sets 𝐵𝑝,𝑝 for 𝑝 = 1, 2, . . . , ⌊|𝑉 |/2⌋ can

be obtained from (5.6) up to uni-direction. The method for determining the uni-directed

bilateral sets is identical to the (Step I) in the proof of Theorem 5.11. ■

5.3.2 semi-symmetric orientations of proper caterpillars

Even though the non-uni-directed bilateral sets are straightforward to determine from the

quasisymmetric 𝐵-function, they cause hindrance in recovering the pendant vectors (see

Figure 5.8). This imposes the constraint of considering orientations of proper caterpillars

in which certain pendant vectors corresponding to inward and outward directed bilateral

sets exhibit symmetry.

Definition 5.10. Let 𝐶 be a proper caterpillar. An orientation 𝐶
→

is said to be semi-

symmetric if for every inward and outward directed bilateral set 𝐵𝑝,𝑝′ , the pendant

vectors 𝑃(𝑣𝑝) and 𝑃(𝑣ℓ−𝑝′+1) are equal. We denote the set of isomorphism classes of

semi-symmetric orientation of 𝐶 by O(𝐶).

The oriented proper caterpillar in Figure 5.3 is a semi-symmetric orientation, whereas the

oriented caterpillars in Figure 5.8 are not. We now prove that the pendant vectors in semi-

symmetric orientations of proper caterpillars can be retrieved from the quasisymmetric

𝐵-function.

Theorem 5.11. The semi-symmetric orientations of proper caterpillars can be

distinguished by their quasisymmetric 𝐵-functions.

Proof. We have already established the reconstruction of spine in Proposition 5.9.

It suffices to prove that the pendant vectors in semi-symmetric orientations can be

determined by their quasisymmetric 𝐵-function. Let 𝐶
→

be a semi-symmetric orientation

of a proper caterpillar 𝐶. The idea involves consideration of in-out degree sequence

of the digraph, and surjective 3-colorings whose non-monochromatic edges comprise
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of one spine edge and one pendant edge. In particular, we are examining the multiset

Mon(1, |𝑉 | − 1), and colorings in which the deletion of non-monochromatic edges leads

to connected components of sizes either 1, 𝐿𝑝 −1 and |𝑉 | − 𝐿𝑝, or 1, 𝑅𝑝′ −1 and |𝑉 | −𝑅𝑝′ .

We prove by induction on 𝑠 ∈
{
𝐿𝑝, 𝑅𝑝′ | 2 ≤ 𝐿𝑝, 𝑅𝑝′ ≤ ⌊|𝑉 |/2⌋ and 𝑝, 𝑝′ ≥ 1

}
where

the Comp(𝐶) is lexicographically smaller than its reverse. We prove the base step

by using the multiset Mon2(1, |𝑉 | − 1) that encodes the in-out degree sequence of the

vertices of degree 2 (see (5.2)). For the base step 𝑠 = 2, we have either 𝑠 = 𝐿1 ≠ 𝑅1

or 𝑠 = 𝐿1 = 𝑅1. In the former scenario, 𝑣1 is the unique vertex of degree 2 in 𝐶, and

therefore the multiset

Mon2(1, |𝑉 | − 1) =



{𝑦2} iff 𝑣1𝑣2 ∈ 𝐴 and 𝑃(𝑣1) = (1, 0),

{𝑧2} iff 𝑣2𝑣1 ∈ 𝐴 and 𝑃(𝑣1) = (0, 1),

{𝑦𝑧} otherwise.

In the latter case, 𝑣1 and 𝑣ℓ are the only vertices of degree 2, and we have four

possibilities for the orientation of 𝐵1,1. The following computation table depicts that in

all four cases, the multiset Mon2(1, |𝑉 | − 1) containing the in-out degree sequence of

𝑣1 and 𝑣ℓ distinguishes the occurrences of the pendant vectors of 𝑃(𝑣1) and 𝑃(𝑣ℓ) in

semi-symmetric orientations.
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Orientation of bilateral set 𝐵1,1

right directed left directed inward directed outward directed

𝑃(𝑣1) 𝑃(𝑣ℓ) 𝑃(𝑣1) 𝑃(𝑣ℓ) 𝑃(𝑣1) 𝑃(𝑣ℓ) 𝑃(𝑣1) 𝑃(𝑣ℓ)

(1, 0) (0, 1) (0, 1) (1, 0) {𝑦2, 𝑧2}

(1, 0) (1, 0) (1, 0) (1, 0) {𝑦2, 𝑦𝑧}

(0, 1) (0, 1) (0, 1) (0, 1) {𝑦𝑧, 𝑧2}

(0, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0) {2𝑦𝑧}

(1, 0) (1, 0) {2𝑦2}

(0, 1) (0, 1) {2𝑧2}

Mon2(1, |𝑉 | − 1)

Assume by induction that we already have the knowledge of the pendant vectors 𝑃(𝑣𝑞)

and 𝑃(𝑣ℓ−𝑞′+1) for 𝐿𝑞, 𝑅𝑞′ < 𝑠. Now, consider the case where 𝑠 = 𝐿𝑝 = 𝑅𝑝′ . According

to Observation 5.5, we deduce that the set of non-monochromatic edges of the colorings

in 𝐹𝐶 (𝑠 − 1, |𝑉 | − 𝑠, 1) are
{
{𝑣𝑝, 𝑣𝑝+1}, {𝑣𝑞, 𝑢𝑞𝑖}

}
or{

{𝑣ℓ−𝑝, 𝑣ℓ−𝑝+1}, {𝑣ℓ−𝑞′+1, 𝑢ℓ−𝑞′+1 𝑖}
}

for 𝑞 = 1, 2, . . . , 𝑝 and 𝑞′ = 1, 2, . . . , 𝑝′. Let

[𝑦2], [𝑧2] and [𝑦𝑧] denote the multiplicity of 𝑦2, 𝑧2 and 𝑦𝑧 in Mon2(𝑠 − 1, |𝑉 | − 𝑠, 1)

respectively. Then, the partial sums of pendant vectors are given by:

𝑝∑︁
𝑘=1

𝑃(𝑣𝑘 ) =


( [𝑦2], 𝑠 − 𝑝 − [𝑦2]) if 𝐵𝑝,𝑝′ is right directed,

(𝑠 − 𝑝 − [𝑧2], [𝑧2]) if 𝐵𝑝,𝑝′ is left directed.
(5.8)

𝑝′∑︁
𝑘=1

𝑃(𝑣ℓ−𝑘+1) =


(𝑠 − 𝑝′ − [𝑧2], [𝑧2]) if 𝐵𝑝,𝑝′ is right directed,

( [𝑦2], 𝑠 − 𝑝′ − [𝑦2]) if 𝐵𝑝,𝑝′ is left directed.
(5.9)

𝑝∑︁
𝑘=1

𝑃(𝑣𝑘 ) +
𝑝′∑︁
𝑘=1

𝑃(𝑣ℓ−𝑘+1) =


( [𝑦2], [𝑦𝑧]) if 𝐵𝑝,𝑝′ is inward directed,

( [𝑦𝑧], [𝑧2]) if 𝐵𝑝,𝑝′ is outward directed.
(5.10)
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This implies that we can determine both 𝑃(𝑣𝑝) and 𝑃(𝑣ℓ−𝑝′+1) when 𝐵𝑝,𝑝′ is uni-directed.

On the other hand, if {𝑣𝑝, 𝑣𝑝+1} and {𝑣ℓ−𝑝′ , 𝑣ℓ−𝑝′+1} are not bilateral edges, then (5.8)

and (5.9) can be used to derive the pendant vectors of 𝑃(𝑣𝑝) and 𝑃(𝑣ℓ−𝑝′+1) as well.

However, when 𝐵𝑝,𝑝′ is not uni-directed, we can extract 𝑃(𝑣𝑝) +𝑃(𝑣ℓ−𝑝′+1), and therefore

compute the pendant vectors of both vertices 𝑣𝑝 and 𝑣ℓ−𝑝′+1 when 𝐶
→

is a semi-symmetric

orientation. Note that if |𝑉 |/2 ∉ {𝐿𝑝}ℓ𝑝=1, then there exist a unique spine vertex 𝑣𝑡 such

that 𝐿𝑡−1 ≤ ⌊|𝑉 |/2⌋ < 𝐿𝑡 (For example, in Figure 5.3, the partial sum 𝐿3 ≤ 8 < 𝐿4).

The equations mentioned above cover the computation of all pendant vectors except for

𝑃(𝑣𝑡). Nonetheless, we can determine this pendant vector by subtracting
∑
𝑘∈[ℓ]\{𝑡} 𝐼𝑘

and
∑
𝑘∈[ℓ]\{𝑡}𝑂𝑘 from the multiplicity of 𝑦 and 𝑧 in the degree multiset Mon(1, |𝑉 | − 1),

respectively. Thus, the orientation of 𝐶
→

can be reconstructed from the quasisymmetric

𝐵-function up to isomorphism. ■

The above theorem and the result that caterpillars are reconstructible from their chromatic

symmetric function, leads us to the following.

Corollary 5.3. The semi-symmetric orientations of proper caterpillars can be

reconstructed by their quasisymmetric 𝐵-functions.

5.3.3 Asymmetric proper caterpillars.

Recall the Definition 5.4(b) of asymmetric proper caterpillars, which dictates that

the components of their associated composition must be distinct. We show that all

oriented asymmetric proper caterpillars can be reconstructed from their quasisymmetric

𝐵-functions. We use the fact that no more than two pairs of non-pendant vertices can

have the same degree. Consequently, we can sequentially compute the pendant vectors

by removing the terms contributed by the spine arcs connected to each spine vertex.

Theorem 5.12. The quasisymmetric 𝐵-function distinguishes orientations of proper

caterpillars up to isomorphism.

Proof. Without loss of generality, we assume that Comp(𝐶) = (𝛼1, 𝛼2, . . . , 𝛼ℓ) is

lexicographically smaller than its reverse. For 𝑖 = 1, 2, . . . , ℓ, let ℎ𝑖 be the coloring in
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𝐹𝐶 (1, |𝑉 | − 1) that assigns the unique color 1 to the spine vertex 𝑣𝑖. Thus, we have

mℎ𝑖 B 𝑦asc(ℎ𝑖)𝑧dsc(ℎ𝑖) = 𝑦outdegree of vi𝑧indegree of vi (5.11)

From Proposition 5.9, the orientation of spine of 𝐶
→

is known. This implies that the

above monomials can be computed from the pendant vector of the vertices. On the other

hand, the internal vertices can be identified with their unique corresponding monomials

due to the equality of degree, and the pendant vector of such vertices can be retrieved by

the following:

𝑃(𝑣𝑖) =



(
deg𝑦

mℎ𝑖

𝑦2 , deg𝑧
mℎ𝑖

𝑦2

)
if 𝑣𝑖𝑣𝑖−1, 𝑣𝑖𝑣𝑖+1 ∈ 𝐴,(

deg𝑦
mℎ𝑖

𝑧2 , deg𝑧
mℎ𝑖

𝑧2

)
if 𝑣𝑖−1𝑣𝑖, 𝑣𝑖+1𝑣𝑖 ∈ 𝐴,(

deg𝑦
mℎ𝑖

𝑦𝑧
, deg𝑧

mℎ𝑖

𝑦𝑧

)
otherwise.

(5.12)

Due to asymmetry of the caterpillar, all the monomials in Mon(1, |𝑉 | − 1) \ {𝑚ℎ1 , 𝑚ℎℓ }

have distinct total degrees. Consequently, we can easily identify the corresponding

internal vertices and compute their pendant vectors using (5.12). Therefore it suffices to

compute the pendant vertices 𝑃(𝑣1) and 𝑃(𝑣ℓ). Note that 𝛼1 ≠ 𝛼ℓ implies that {𝑣1, 𝑣2}

is not a bilateral edge, allowing us to compute 𝑃(𝑣1) from Theorem 5.11. Furthermore,

the pendant vector for 𝑃(𝑣ℓ) can be determined using Theorem 5.11, except when a

non-uni-directed bilateral set 𝐵𝑘,1 exists. However, when there exists a non-uni-directed

bilateral set 𝐵𝑘,1, we use (5.10) to determine the partial sum 𝑃(𝑣ℓ) +
∑𝑘
𝑖=1 𝑃(𝑣𝑖). Since

the 𝑃(𝑣1) is known, and the degree of the internal vertices 𝑣2, 𝑣3, . . . , 𝑣𝑘 are less than

deg(𝑣ℓ), their corresponding monomials in Mon(1, |𝑉 | − 1) \ {𝑚ℎ1} can be identified.

This enables us to compute the pendant vectors of the internal vertices 𝑣2, 𝑣3, . . . , 𝑣𝑘 ,

and as a result, the pendant vector 𝑃(𝑣ℓ) can be computed as well. This completes the

proof. ■

Particularly for the asymmetric proper caterpillars, we obtain the following.
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Corollary 5.4. Let 𝐶
→
(𝑉, 𝐴) be an oriented asymmetric proper caterpillar. Then 𝐶

→
can

be reconstructed from its quasisymmetric 𝐵-function up to isomorphism.

5.4 DISTINGUISHING ORIENTATIONS OF PROPER Q-CATERPILLARS

We proved in Chapter 3 that the chromatic symmetric function distinguishes proper

𝑞-caterpillars, for 𝑞 ≥ 2. We now employ the methods from Section 5.3 to show that

certain orientations of proper 𝑞-caterpillars can be distinguished by their quasisymmetric

𝐵-functions.

Recall that for 𝑞 ≥ 2, a 𝑞-caterpillar is a tree containing a path 𝑆 = ⟨𝑣1, . . . , 𝑣ℓ⟩ (with

endpoints 𝑣1 and 𝑣ℓ) called the spine, with ℓ > 0 and paths of length exactly 𝑞 glued to

the spine vertices 𝑣𝑖. These 𝑞-length paths are called as the branches of the 𝑞-caterpillar.

Further, a 𝑞-caterpillar is said to proper if every vertex of the spine is adjacent to at least

one branch.

For a proper 𝑞-caterpillar 𝐶, with spine ⟨𝑣1, 𝑣2, . . . , 𝑣ℓ⟩, let 𝑝1, 𝑝2, . . . , 𝑝ℓ be the number

of branches glued to the vertices 𝑣1, 𝑣2, . . . , 𝑣ℓ, respectively. Let Comp(𝐶) be the integer

composition (𝑞𝑝1 + 1, 𝑞𝑝2 + 1, . . . , 𝑞𝑝ℓ + 1) associated to 𝐶 for 𝑖 = 1, 2, . . . , ℓ. The

notion of the partial sums and the bilateral sets defined associated with proper caterpillars

in Section 5.3 extends canonically to the proper 𝑞-caterpillars.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

Figure 5.7: An admissible orientation of proper 2-caterpillar with associated composition
(3, 3, 5, 7, 3, 5, 3).

We restrict ourselves to orientations of proper 𝑞-caterpillars wherein the branches are

directed paths.
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Definition 5.13 (Admissible orientation). An orientation of a proper 𝑞-caterpillar is said

to be admissible if each branch is either oriented towards the spine or away from the

spine. That is, each branch is a directed path.

For example, Figure 5.7 is an admissible orientation of a proper 2-caterpillar. For an

admissible orientation of proper 𝑞-caterpillar 𝐶
→

and its spine vertex 𝑣𝑘 , let 𝑂𝑘 and 𝐼𝑘

denote the number of outgoing and incoming directed branches incident on 𝑣𝑘 . The

path vector of the spine vertex 𝑣𝑘 is the tuple 𝑃(𝑣𝑘 ) B (𝑂𝑘 , 𝐼𝑘 ). For instance, the path

vector of the spine vertex 𝑣6 in Figure 5.3 is (1, 1). Similar to the proper caterpillars,

any admissible orientation of a fixed 𝑞-caterpillar 𝐶 is uniquely determined by (a) the

orientation of the spine ⟨𝑣1, 𝑣2, . . . , 𝑣ℓ⟩, and (b) the path vector 𝑃(𝑣𝑘 ) of each spine

vertex 𝑣𝑘 .

Proposition 5.14. Let 𝐶 (𝑉, 𝐴) be an oriented proper 𝑞-caterpillar. Then the orientation

of the spine can be determined by the quasisymmetric 𝐵-function.

Proof. The proof is verbatim to the proof of Proposition 5.9. ■

An admissible orientation of proper 𝑞-caterpillars is said to be semi-symmetric if for

every inward or outward directed bilateral set 𝐵𝑝,𝑝′ , the path vectors (𝑂𝑝, 𝐼𝑝) and

(𝑂ℓ−𝑝′+1, 𝐼ℓ−𝑝′+1) are equal, where ℓ is the length of the spine.

The methods involved in recovering the path vectors are almost similar to that of

determining the pendant vectors of proper caterpillars. The key difference lies in

determining the path vectors of the end vertices of the spine. Recall that we used

the degree 2 monomials from the multiset of in-out degree of the vertices, which

corresponded to the end vertices 𝑣1 and 𝑣ℓ. However, for 𝑞 ≥ 2, the proper 𝑞-caterpillars

have more than two vertices of degree 2. We observe that in an admissible orientation of

proper 𝑞-caterpillars, the non-spine vertices of degree 2 have exactly one in-degree and

one out-degree. Thus, they contribute 𝑦𝑧 to the degree multiset Mon2(1, |𝑉 | − 1). We
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Figure 5.8: Two non-isomorphic graphs having same in-out degree sequence, height-
profile and aforementioned statistics.

purge the contribution of the non-spine vertices of degree 2 as follows:

M̃on2(1, |𝑉 | − 1) B Mon2(1, |𝑉 | − 1) \
{
(
ℓ∑︁
𝑖=1
(𝑞 − 1)𝑝𝑖) · 𝑦𝑧

}
.

With this minor adjustment, the path vectors of semi-symmetric admissible orientations

can be retrieved from the quasisymmetric function. Thus, we have the following.

Theorem 5.15. The semi-symmetric admissible orientations of proper 𝑞-caterpillars

can be distinguished by their quasisymmetric 𝐵-functions.

Proof. The proof is the same as the proof of Theorem 5.11, wherein Mon2(1, |𝑉 | − 1) is

replaced by M̃on2(1, |𝑉 | − 1). ■

5.5 CONCLUDING REMARKS

We showed that degree 2 monomials of certain subjective 3-colorings are sufficient for

distinguishing semi-symmetric orientations of proper caterpillars. However, the statistics

discussed in Section 5.3 are insufficient to distinguish non-semi-symmetric orientations.

The Figure 5.8 exhibits two non-isomorphic oriented proper caterpillars for which the

statistics discussed in the proofs of Theorem 5.11 are equal, but their corresponding

quasisymmetric 𝐵-functions are distinct. Also, we do not know how to distinguish

semi-symmetric orientations from the non-semi-symmetric orientations. Nevertheless,

we believe that the method to distinguish these two types of orientations will shed light

on reconstruction of the non-semi-symmetric orientations. We would like to highlight

that the proof was based on examining monomials of degree at most 2 of surjective 3
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colorings and the degree multiset. Moreover, the methods used in Proposition 5.9 and

Theorem 5.11 can be applied to determine the semi-symmetric orientation of trees in

which vertices with a degree of at least 3 induce a path. Computational evidence suggests

that the higher degree terms can distinguish the non-semi-symmetric orientations, but

providing their combinatorial interpretation with respect to the caterpillar is a tedious

task. As mentioned earlier, the challenge in studying non-proper caterpillars lies in

dealing with the presence of pendant arcs while investigating the orientation of the spine.

However, we hope that one may overcome this obstacle by considering the examination

of various coefficients together.
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CHAPTER 6

DIGRAPHS WITH EQUAL QUASISYMMETRIC
𝐵-FUNCTIONS

Similar to the Tutte polynomial, the 𝐵-polynomial satisfies a deletion-contraction relation

with respect to a symmetric edge {𝑢𝑣, 𝑣𝑢}. However, this property does not hold for the

quasisymmetric 𝐵-function, primarily because of its homogeneity in degree |𝑉 |.

In [14], L. Crew and S. Spirkl introduced the vertex-weighted chromatic symmetric

function that satisfies the deletion-contraction property. Additionally, the vertex-weighted

Tutte symmetric function was defined, along with exhibiting non-isomorphic graphs with

the same Tutte symmetric functions [1].

Applying similar methods, we introduce the vertex-weighted quasisymmetric 𝐵-function

and showcase certain pairs of digraphs that share the same quasisymmetric 𝐵-functions.

6.1 VERTEX-WEIGHTED QUASISYMMETRIC 𝐵-FUNCTIONS

Let𝐷 (𝑉, 𝐴) be a digraph. Let𝜔 : 𝑉 → P be a map that assigns each vertex of𝐷 a positive

weight. We call the pair (𝐷, 𝜔) a weighted digraph. We define the quasisymmetric

𝐵-function of a weighted digraph as follows:

Definition 6.1. Let (𝐷, 𝜔) be a weighted digraph. The vertex-weighted quasisymmetric

𝐵-function is defined as:

𝐵(𝐷,𝜔) (x; 𝑦, 𝑧) :=
∑︁
𝑓 :𝑉→P

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc( 𝑓 )𝑧dsc( 𝑓 ) (6.1)

For 𝐴 ⊆ 𝑉 , let |𝐴|𝜔 denote the sum of weights of the vertices in 𝐴. We now present the

expansion of the weighted quasisymmetric 𝐵-function in the monomial quasisymmetric



basis.

Proposition 6.1. For any weighted digraphs (𝐷, 𝜔),

𝐵(𝐷,𝜔) (x; 𝑦, 𝑧) =
|𝑉 |∑︁
𝑝=1

∑︁
𝑔∈Surj(𝑉,𝑝)

𝑀( |𝑔−1 (1) |𝜔 ,|𝑔−1 (2) |𝜔 ,...,|𝑔−1 (𝑝) |𝜔)𝑦
asc(𝑔)𝑧dsc(𝑔) (6.2)

Proof. Let 𝑓 be a P-coloring of (𝐷, 𝜔). Let 𝑓 := 𝜎 ◦ 𝑓 where 𝜎 : 𝑓 (𝑉) → [ 𝑓 (𝑉)] is

an order preserving bijection. Note that 𝑓 is a surjective [ 𝑓 (𝑉)]-coloring, and the ascent

and descent sets of 𝑓 coincide respectively with the ascent and descents of 𝑓 . ■

Let 𝑒 = {𝑢1𝑢2, 𝑢2𝑢1} be a symmetric arc in a weighted digraph (𝐷, 𝜔). We define the

weight 𝜔\𝑒 := 𝜔, and

𝜔/𝑒 (𝑣) :=


𝜔(𝑣) if 𝑣 ∈ 𝑉 \ {𝑢1, 𝑢2}

𝜔(𝑢1) + 𝜔(𝑢2) if v is the vertex obtained by identifying 𝑢1 and 𝑢2

Proposition 6.2. Let 𝐷 (𝑉, 𝐴, 𝜔) be a weighted graph and 𝑒 = {𝑢𝑣, 𝑣𝑢} be a pair of

opposite arcs. Then

𝐵(𝐷,𝜔) (x; 𝑦, 𝑧) = (𝑦𝑧)𝐵(𝐷\𝑒,𝜔\𝑒) (x; 𝑦, 𝑧) + (1 − 𝑦𝑧)𝐵(𝐷/𝑒,𝜔/𝑒) (x; 𝑦, 𝑧) (6.3)

Proof. Consider the vertex-weighted quasisymmetric 𝐵-function of (𝐷, 𝜔),

𝐵(𝐷,𝜔) (x; 𝑦, 𝑧) =
∑︁
𝑓 :𝑉→P

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴( 𝑓 )𝑧dsc𝐴( 𝑓 )

=
∑︁
𝑓 :𝑉→P

𝑓 (𝑢)≠ 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴( 𝑓 )𝑧dsc𝐴( 𝑓 ) +

∑︁
𝑓 :𝑉→P

𝑓 (𝑢)= 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴( 𝑓 )𝑧dsc𝐴( 𝑓 )

=(𝑦𝑧)
∑︁
𝑓 :𝑉→P

𝑓 (𝑢)≠ 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴\𝑒 ( 𝑓 )𝑧dsc𝐴\𝑒 ( 𝑓 )

+
∑︁
𝑓 :𝑉→P

𝑓 (𝑢)= 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴( 𝑓 )𝑧dsc𝐴( 𝑓 )
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=(𝑦𝑧)
©­­­«𝐵(𝐷\𝑒,𝜔\𝑒) (x; 𝑦, 𝑧) −

∑︁
𝑓 :𝑉→P

𝑓 (𝑢)= 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴\𝑒 ( 𝑓 )𝑧dsc𝐴\𝑒 ( 𝑓 )

ª®®®¬
+

∑︁
𝑓 :𝑉→P

𝑓 (𝑢)= 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴\𝑒 ( 𝑓 )𝑧dsc𝐴\𝑒 ( 𝑓 )

=(𝑦𝑧)𝐵(𝐷\𝑒,𝜔\𝑒) (x; 𝑦, 𝑧) + (1 − 𝑦𝑧)
∑︁
𝑓 :𝑉→P

𝑓 (𝑢)= 𝑓 (𝑣)

(∏
𝑣∈𝑉

𝑥
𝜔(𝑣)
𝑓 (𝑣)

)
𝑦asc𝐴\𝑒 ( 𝑓 )𝑧dsc𝐴\𝑒 ( 𝑓 )

=(𝑦𝑧)𝐵(𝐷\𝑒,𝜔\𝑒) (x; 𝑦, 𝑧) + (1 − 𝑦𝑧)𝐵(𝐷/𝑒,𝜔/𝑒) (x; 𝑦, 𝑧)

■

We now define the isomorphism between weighted digraphs.

Definition 6.3. Any two weighted digraphs (𝐷, 𝜔) and (𝐷′, 𝜔′) are isomorphic if

there exists a digraph isomorphism 𝜑 : 𝐷 → 𝐷′ satisfying 𝜑(𝜔(𝑣)) = 𝜔′(𝜑(𝑣)), for all

𝑣 ∈ 𝑉 (𝐷).

Observe that (6.3) enables us to construct digraphs with equal vertex-weighted

quasisymmetric functions as follows: we can exhibit two non-isomorphic digraphs

(𝐷, 𝜔) and (𝐷′, 𝜔′) such that there exist symmetric edges 𝑒 ∈ 𝐴(𝐷) and 𝑒′ ∈ 𝐴(𝐷′)

satisfying

(𝐷 \ 𝑒, 𝜔 \ 𝑒) ≃ (𝐷′ \ 𝑒′, 𝜔′ \ 𝑒′) and (𝐷/𝑒, 𝜔/𝑒) ≃ (𝐷′/𝑒′, 𝜔′/𝑒′).

In particular, if 𝜔 and 𝜔′ map vertices identically to 1, then the above argument implies

that 𝐷 and 𝐷′ share the same quasisymmetric 𝐵-functions.

In [1], Aliste-Prieto et al. presented the non-isomorphic graphs with the same Tutte

symmetric function (see Figure 6.1).

Based on the graphs in Figure 6.1 and (6.3), we claim that the digraphs in Figure 6.2

share the same quasisymmetric 𝐵-function.
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Figure 6.1: Non-isomorphic graphs with equal Tutte symmetric functions.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑣6 𝑣7

𝑣8

(a) Digraph 𝐷

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

𝑤6 𝑤7

𝑤8

(b) Digraph 𝐷′

Figure 6.2: Non-isomorphic digraphs with equal quasisymmetric 𝐵-functions.

The digraphs 𝐷 and 𝐷′ can be considered as weighted digraphs (𝐷, 1) and (𝐷′, 1),

respectively, with all vertices assigned weights 1. We prove the equality of their

quasisymmetric 𝐵-functions by showing that for 𝑒 = {𝑣6𝑣7, 𝑣7𝑣6} and

𝑒′ = {𝑤6𝑤7, 𝑤7𝑤6}, the digraphs satisfy (𝐷 \ 𝑒, 1 \ 𝑒) ≃ (𝐷′ \ 𝑒′, 1 \ 𝑒′) and

(𝐷/𝑒, 1/𝑒) ≃ (𝐷/𝑒′, 1/𝑒′).

It is straightforward to observe that (𝐷/𝑒, 1/𝑒) and (𝐷/𝑒′, 1/𝑒′) is isomorphic as

weighted graphs under the isomorphism 𝑤𝑖 ↦→ 𝑣𝑖 for all 𝑖 = 1, 2, . . . , 8. On the other

hand, we define a map from 𝐷′ \ 𝑒′ to 𝐷 \ 𝑒 as follows:

𝑤1 ↦→ 𝑣8, 𝑤2 ↦→ 𝑣5, 𝑤3 ↦→ 𝑣7, 𝑤4 ↦→ 𝑣3,

𝑤5 ↦→ 𝑣2, 𝑤6 ↦→ 𝑣4, 𝑤7 ↦→ 𝑣1, 𝑤8 ↦→ 𝑣6.

We illustrate that the map mentioned above is an isomorphism in Figure 6.3 by exhibiting

relabeling and redrawing of the graph according to the aforementioned map.
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𝑤7 𝑤5 𝑤4 𝑤6 𝑤2

𝑤8 𝑤3

𝑤1

(a) Digraph 𝐷 with relabeling defined by the
isomorphism.

𝑤8 𝑤5 𝑤7 𝑤3 𝑤2

𝑤4 𝑤1

𝑤6

(b) Redrawing the graph 𝐷 with new
labellings.

Figure 6.3: Illustration of isomorphism

Thus, the recurrence relation in Proposition 6.2 can be employed to demonstrate non-

isomorphic digraphs with equal quasisymmetric 𝐵-functions. Furthermore, (6.3) also

provides a subset-sum expansion of the quasisymmetric 𝐵-function similar to (4.5).
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

While Stanley’s tree isomorphism conjecture remains open, our result demonstrates that

the ideas presented in [3] can be extended to a more general class of trees that resemble

proper caterpillars.

Along this line, we call a tree 𝑇 (𝑉, 𝐸) as a generalized caterpillar if the trunk of the tree

forms a path. Further, a generalized proper caterpillar is a generalized caterpillar in

which every vertex of the trunk has degree at least 3. Equivalently, a tree is a generalized

proper caterpillar if and only if it satisfies |𝑇◦ | = |𝑉 | − 𝛿1 − 𝛿2, where 𝑇◦ represents the

trunk of the tree and 𝛿𝑖 denotes the number of vertices of degree 𝑖 in 𝑇 . We believe that

further generalizations of Lemma 3.16 might hold for generalized proper caterpillars. In

particular, we propose the following question:

Question 7.1. Do the 𝑈-polynomials of generalized proper caterpillars relate to the

L-polynomials of the associated integer compositions?

For instance, consider a tree 𝑇 obtained from a proper 𝑞-caterpillar 𝑆 by gluing an

additional twig of length 𝑞 + 1 at 𝑖th vertex of the spine. Let 𝜑′(𝑇) be the integer

composition obtained from 𝜑(𝑆) by replacing the 𝑖th component 𝜑(𝑆)𝑖 with 𝜑(𝑆)𝑖+(𝑞+1).

Then, it can be seen that

𝑈𝑇 (0, 0 . . . , 0︸     ︷︷     ︸
𝑞

, 𝑥𝑞+1, . . . ) = L(𝜑′(𝑇); x) + 𝑥𝑞+1L(𝜑(𝑆); x).

Observe that the 𝑈-polynomial of 𝑇 is expressed as the sum of the L-polynomials of

𝜑(𝑆) and 𝜑′(𝑇). It turns out that in such cases, Theorem 3.13 cannot be applied directly.

Nevertheless, we do believe that distinguishing such trees by𝑈-polynomial is feasible.



For digraphs, we demonstrated that certain orientations of proper 𝑞-caterpillars can be

distinguished by their quasisymmetric 𝐵-functions. Furthermore, for 𝑞 = 1, our methods

demonstrate that these orientations can be reconstructed. To the best of our knowledge,

the orientations of trees in Theorem 5.11 mark the first instance of trees containing

induced ‘N’ that can be distinguished by their quasisymmetric functions. Since the

method primarily relies on the integer compositions associated with the trees, it shows

promise for applications to other trees, such as generalized proper caterpillars.

We conclude with the following questions regarding digraphs with equal quasisymmetric

𝐵-functions.

Question 7.2. Does there exist

(a) infinitely many pairs of non-isomorphic digraph containing a unique directed
2-cycle and equal quasisymmetric 𝐵-function?

(b) pair of non-isomorphic digraphs without containing a 2-cycle and equal
quasisymmetric 𝐵-function?
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APPENDIX A

COMPUTATION USING SAGEMATH

We present the Sagemath code for computing the quasisymmetric 𝐵-function in its

monomial quasisymmetric basis. The code is primarily derived from the Sagemath code

of chromatic quasisymmetric function [47].

Input: A digraph 𝐷 (𝑉, 𝐴)

Output: Quasisymmetric 𝐵-function of 𝐷 in monomial quasisymmetric functions.

Code:

def quasisymmetric_B_function(D, z=None, y=None, R=None):

# Import QuasisymmetricFunctions and OrderedSetPartitions from the

repository.

from sage.combinat.ncsf_qsym.qsym import QuasiSymmetricFunctions

from sage.combinat.set_partition_ordered import

OrderedSetPartitions

# Defining the ring of bivariate polynomials over rational numbers.

if y is None and z is None and R is None:

R, (y, z) = PolynomialRing(RationalField(), 2, ’yz’).objgens

()

# Defining ring of quasisymmetric functions over $Q[y,z]$ with family

of monomial quasisymmetric

functions basis.

M = QuasiSymmetricFunctions(R).M()

ret = M.zero()

V = D.vertices()

A = list(D.edges(labels=False))

# Defining ascents and descents with respect to an ordered partition.

def asc(sigma):

stat = 0

for i, s in enumerate(sigma):



for u in s:

stat += sum(A.count((u,v)) for p in sigma[i+1:] for v

in p

if D.has_edge(u,v))

return stat

def dsc(sigma):

stat = 0

for i, s in enumerate(sigma):

for u in s:

stat += sum(A.count((v,u)) for p in sigma[i+1:] for v

in p

if D.has_edge(v,u))

return stat

# Associating the monomials of ascents and descents of an ordered

partition to its corresponding

monomial quasisymmetric basis.

for sigma in OrderedSetPartitions(V):

ret += M.term(sigma.to_composition(), (y**asc(sigma))*(z**dsc

(sigma)))

return ret
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