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Abstract

TheB-polynomial and quasisymmetricB-function, introduced by Awan and Bernardi, extends
the widely studied Tutte polynomial and Tutte symmetric function to digraphs. In this article,
we address one of the fundamental questions concerning these digraph invariants, which is,
the determination of the classes of digraphs uniquely characterized by them. We solve an open
question originally posed by Awan and Bernardi, regarding the identification of digraphs that
result from replacing every edge of a graph with a pair of opposite arcs. Further, we address
the more challenging problem of reconstructing digraphs using their quasisymmetric functions.
In particular, we show that the quasisymmetric B-function reconstructs partially symmet-
ric orientations of proper caterpillars. As a consequence, we establish that all orientations
of paths and asymmetric proper caterpillars can be reconstructed from their quasisymmet-
ric B-functions. These results enhance the pool of oriented trees distinguishable through
quasisymmetric functions.
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1 Introduction

The digraph polynomials and functions arising through the colorings are invariants that encode
various statistics associated with the digraphs. One of the most sought-after problems with respect
to these digraph invariants is the following: can the invariants uniquely determine the digraphs? If
not, which classes of digraphs are distinguishable by these invariants? These questions have been
investigated for various invariants [1–5], and are sort of digraph analogues of the Stanley’s Tree
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Isomorphism conjecture, which posits that the chromatic symmetric function of trees distinguishes
them up to isomorphism.

Our digraph polynomials of interest in the above context are the B-polynomial and the qua-
sisymmetric B-function introduced by Awan and Bernardi in [6]. These invariants respectively
extend the Tutte polynomial [7] and Tutte symmetric function [8] to digraphs using the Potts
model as an intermediary.
Definition 1 (Theorem 3.1, [6]). For a digraph D(V,A), the B-polynomial BD(x, y, z) is the
unique trivariate polynomial, such that for every positive integer k,

BD(k, y, z) =
∑

f :V→[k]

yasc(f)zdsc(f),

where [k] := {1, 2, . . . , k} and asc(f) (resp. dsc(f)) denotes the number of arcs uv in A such that
f(u) < f(v) (resp. f(u) > f(v)). Moreover, the expansion of the B-polynomial in the binomial
basis is given by

BD(x, y, z) =

|V |∑
p=1

(
x

p

) ∑
g∈Surj (V,p)

yasc(g)zdsc(g)

 , (1.1)

where Surj (V, p) is the collection of surjective colorings from V to [p].
The Tutte polynomial has been extensively studied in various fields and remains an active area

of study, primarily due to its universal deletion-contraction property. A detailed survey of results
pertaining to the Tutte polynomial can be found in [9, 10].

The B-polynomial is interesting to study in its own right as it simultaneously generalizes the
chromatic polynomial, strict order polynomial, and weak order polynomial. It also provides various
generating functions formulation of the above polynomials for digraphs. The B-polynomial extends
the Tutte polynomial in the following way. The Tutte polynomial of a graph G is equivalent to

the B-polynomial of the digraph G
↔

obtained by replacing every edge in G with a pair of opposite

arcs. The digraph G
↔

is called as symmetrization of the graph G.
In the former part of this paper, we solve the following open question raised in [6] concerning

the identification of digraphs obtained by symmetrization.
Question 2 (Question 10.3, [6]). Is it true that BD(x, y, z) is a function of x and yz if and only
if D is a symmetrization of some graph G?

In Theorem 7, we prove that the answer to the above question is in the affirmative. In other
words, we establish that the B-polynomial differentiates the classes of digraphs obtained through
symmetrization from all other digraphs.

The next natural question would be to examine which classes of digraphs are distinguished
by the B-polynomial, that is, to determine the class D of digraphs such that every pair of non-
isomorphic digraphs in it have distinctB-polynomial. Unfortunately, theB-polynomial is ineffective
in distinguishing orientations of a fixed graph, as there are numerous pairs of non-isomorphic
digraphs with the same B-polynomial (for example, see Figure 1(a)). This is one of the motivations
for introducing a quasisymmetric extension of the B-polynomial and investigating the classes of
digraphs that can be distinguished by this extension. One may view this phenomenon as an analogy
to the fact that all trees of a fixed order have the same chromatic polynomial, but the chromatic
symmetric function holds the potential to distinguish all trees.
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(a) Non-isomorphic digraphs with the
same B-polynomial and chromatic qua-
sisymmetric function.

(b) Digraphs whose corresponding poset
have the same P -partition enumerator.

Fig. 1: The pair of digraphs in (a) and (b) have distinct quasisymmetric B-functions.

Definition 3 (Section 8, [6]). Let P be the set of positive integers and x = (x1, x2, . . . ) denote
the list of commutative indeterminates. For a digraph D(V,A), the quasisymmetric B-function is
defined as

BD(x; y, z) =
∑

f : V→P

(
x
|f−1(1)|
1 x

|f−1(2)|
2 x

|f−1(3)|
3 · · ·

)
yasc(f)zdsc(f). (1.2)

The above digraph invariant is a quasisymmetric analogue of the Tutte symmetric function,
and determines other digraph and poset invariants like order quasisymmetric function, P -partition
enumerator and chromatic quasisymmetric function [11, 12]. Note that by symmetrizing non-
isomorphic graphs with equal Tutte Symmetric functions, one may obtain non-isomorphic digraphs
with the same quasisymmetric B-functions. Therefore, we are interested in the investigation of the
following general question.
Question 4 (Ques 10.7(i), [6]). Does quasisymmetric B-function distinguish acyclic digraphs?

A canonical way to obtain a poset from an acyclic digraph D is by defining a partial order u ⪯ v
iff there is a directed path from u to v in D. Under this correspondence, the study of distinguishing
digraphs and posets by their quasisymmetric functions is closely related and actively investigated:
In [2], it was proven that the order quasisymmetric function distinguishes naturally labeled posets
that are (N, ▷◁)-free, a class that includes rooted trees. Furthermore, in [4], they demonstrated that
all N-free naturally labeled posets can be distinguished by the P -partition enumerator. Additionally,
in [5], labeled rooted trees, along with certain weak edges, are distinguished by their (P, ω)-partition
enumerator.

A stronger and somewhat more challenging problem than distinguishing digraphs is their
“reconstruction”. The previously mentioned results focus on distinguishing non-isomorphic orien-
tations but do not provide a mechanism for their reconstruction. However, J. Zhou has addressed
the reconstruction of rooted trees based on their order quasisymmetric function in [3].

In this paper, we primarily focus on the reconstruction of digraphs from their quasisymmetric
B-functions. Certainly, the quasisymmetric B-function is a stronger invariant than the chromatic
quasisymmetric function and P -partition enumerator (see Figure 1). One of the main reasons for
this is that the quasisymmetric B-function encodes the in-out degree sequence and the height-
profile of digraphs [6, Pg 230]. However, these quantities are not sufficient to distinguish the
orientations of even simple graphs such as paths. For example, Figure 2 depicts non-isomorphic ori-
entations of paths with the same in-out degree sequence and height-profile. Therefore, the problem
of distinguishing orientations of paths by quasisymmetric functions is still open.

In the latter part of this paper, we show that partially symmetric orientations (see Definition
15) of certain caterpillars can be reconstructed from their quasisymmetric B-functions. A tree is
said to be a caterpillar if all the vertices of degree at least two induce a (unique) path, which we
call as the spine of the caterpillar. We now define the following subclasses of caterpillars.
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Fig. 2: Two non-isomorphic oriented paths containing ‘N’, and having the same in-out degree
sequence and height-profile (3, 3, 2).

Definition 5. (a) A proper caterpillar is a caterpillar that has every vertex of the spine adjacent
to at least one pendant vertex.

(b) A proper caterpillar is said to be an asymmetric proper caterpillar if the number of pendant
vertices adjacent to each spine vertex is distinct.

The class of caterpillars has been shown to be reconstructible from chromatic symmetric func-
tions [13–15]. Since the chromatic symmetric function of the underlying digraph is determined by
the quasisymmetric B-function, it is sufficient to focus on the reconstruction problem of the orien-
tations while fixing the underlying caterpillar. For proper caterpillars, we establish in Theorem 16
that their partially symmetric orientations are reconstructible. Implementing the methods involved
in reconstruction of the spine, we are able to reconstruct all the orientations of paths up to isomor-
phism. Using this and the fact that in-out degree sequence is extractible from the quasisymmetric
B-functions, we prove the reconstruction of all orientations of asymmetric proper caterpillars in
Theorem 17.

To the best of our knowledge, Corollary 14 along with Theorems 16 and 17 mark the first
instance of reconstructing digraphs containing ‘N’ using a quasisymmetric function. Furthermore,
these results offer a partial solution to the problem presented in [6, Question 10.7(ii)] and also
encourage further exploration of [5, Conjectures 1.2 and 1.3].

The paper is structured as follows: We begin by introducing graph notations and preliminary
concepts. Next, we present the proof of Theorem 7. In Section 4, we focus on proving Theorems
16 and 17. We conclude with a discussion on further questions and future prospects related to the
study of B-polynomial and the quasisymmetric B-function.

2 Notations and Preliminaries

A graph G is an ordered pair (V (G), E(G)), alternatively written as G(V,E), where V (G) is a
finite set of vertices, and E(G) is a multiset of edges. An edge {u, v} is incident to vertices u and
v. Similarly, a digraph D is an ordered pair (V (D), A(D)), where V (D) represents the finite set of
vertices and A(D) represents the multiset of arcs in D. An arc uv ∈ A(D) is said to be outgoing
from u and incoming to v. It is important to note that adjacency in a graph is a symmetric relation,
but this symmetry need not hold in a digraph. The cardinality of the multiset of arcs incoming to
v and outgoing from v is referred to as the in-degree and out-degree of vertex v, respectively. The
underlying graph of D, denoted as D, is the graph obtained by replacing every arc uv in D with
the edge {u, v}. Henceforth, whenever we refer to an edge in a digraph, we mean the corresponding
edge in the underlying graph.

The set of integers, positive integers, and the set of rationals are denoted by Z, P, and Q,
respectively. For a positive integer p and a graph G(V,E) (or D(V,A)), a p-coloring of G is a
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mapping that assigns a color from the set [p] to each vertex in V . An edge (or arc) is said to be
non-monochromatic under a coloring if its endpoints are assigned distinct colors.

For a commutative ring R with unity, we denote the ring of polynomials over indeterminates
x1, x2, . . . , xn by R[x1, x2, . . . , xn]. The notation [xδ1

1 xδ2
2 · · ·xδn

n ]f(x1, x2, . . . , xn) denotes the coeffi-
cient of the monomial xδ1

1 xδ2
2 · · ·xδn

n in the polynomial f(x1, x2, . . . , xn). Let QSymR(x) denote the
collection of formal power series in commutative indeterminates x = (x1, x2, . . . ) with coefficients
in ring R such that for (δ1, δ2, . . . , δk) ∈ Pk, every function f ∈ QSymR(x) satisfies

[xδ1
i1
xδ2
i2
. . . xδk

ik
]f = [xδ1

j1
xδ2
j2
. . . xδk

jk
]f,

for all increasing k-tuples i1 < i2 < · · · < ik and j1 < j2 < · · · < jk. The ring QSymR(x)
is called the ring of quasisymmetric functions over R, and QSymn

R(x) denotes the collection of
quasisymmetric functions of degree n.

For an integer composition δ = (δ1, . . . , δk) ⊨ n, the quasisymmetric monomial function Mδ is
defined as

Mδ :=
∑

i1<i2<···<ik

xδ1
i1
xδ2
i2
· · ·xδk

ik
,

where the sum is over all increasing k-tuples of positive integers. The collection {Mδ}δ⊨n forms an
R-basis of QSymn

R(x)(see [16]). For a quasisymmetric function f , let [Mδ]f denote the coefficient
of Mδ obtained by expressing f in the monomial quasisymmetric basis over R.

It is evident that BD(x; y, z) lies in QSym
|V |
Z[y,z](x)(since any two colorings of D differing by an

order-preserving bijection, have the same set of ascents and descents). The following proposition
expresses the quasisymmetric B-function in the above monomial basis.
Proposition 6 ([6]). For any digraph D(V,A), we have

BD(x; y, z) =

|V |∑
p=1

∑
f∈Surj (V,p)

Mtype(f)y
asc(f)zdsc(f),

where type(f) is the tuple (|f−1(1)|, |f−1(2)|, . . . , |f−1(p)|) called the type of f .
We briefly recall that the in-out degree sequence of a digraph can be recovered from its qua-

sisymmetric B-function. Given a digraph D(V,A) and v ∈ V , consider the coloring fv that assigns
color 1 to the vertex v and color 2 to the remaining vertices. Observe that every surjective col-
oring of type (1, |V | − 1) uniquely corresponds to a coloring fv for some v ∈ V , and satisfies
yasc(fv)zdsc(fv) = youtdegree of vzindegree of v . Therefore, we have

[M(1,|V |−1)]BD(x; y, z) =
∑
v∈V

yasc(fv)zdsc(fv) =
∑
v∈V

youtdegree of vzindegree of v . (2.3)

For an integer composition β of n, we define the following multisets containing the monomials
of fixed degree corresponding to the surjective colorings.

Mond(β) := {yasc(f)zdsc(f) | type(f) = β and asc(f) + dsc(f) = d}

Mon(β) :=
⋃
d≥0

Mond(β)
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3 B-polynomial of Symmetric Digraphs

For the digraph G
↔

obtained by symmetrizing an undirected graph G, its B-polynomial is contained

in Q[x, yz]. This follows from the observation that, for any coloring of G
↔

, the count of ascents and
descents is the same. We establish that its converse is true as well.
Theorem 7. A digraph D is a symmetrization of some undirected graph G if and only if its
B-polynomial is a function of x and yz.

Prior to the proof of the aforementioned theorem, we present a subset-sum expansion for
BD(x, y, z). This expansion is derived through the repetitive application of the following recur-
rence relation concerning opposite arcs proved in [6, Lemma 4.1]. For a digraph D(V,A), and pair
of opposite arcs e = {uv, vu} in A,

BD(x, y, z) = (yz)BD\e(x, y, z) + (1− yz)BD/e(x, y, z). (3.4)

Let A = A′ ⊔ A′′ be a partition of the arc set A such that A′′ is expressible as a disjoint union of
opposite arc pairs {uv, vu}, and A′ consists of arcs uv such that the opposite arc vu does not belong
to A′ (see Figure 3). The following proposition presents a subset-sum expansion of B-polynomial
with respect to the set A′′.

v1 v2 v3

v4 v5 v6

D(V,A)

v1 v2 v3

v4 v5 v6

D(V,A′)

v1 v2 v3

v4 v5 v6

D(V,A′′)

Fig. 3: Partition of the arc set A into arc sets A′ = {v1v4, v3v2, 2 · v4v5, v5v2, v6v2} and A′′ ={
{v1v2, v2v1}, {v1v4, v4v1}, 2 · {v5v6, v6v5}

}
.

Proposition 8. For digraph D(V,A), we have

BD(x, y, z) =
∑

R⊔S=A′′

(yz)|R|(1− yz)|S|BD\R/S(x, y, z), (3.5)

where A′′ is the set of doubletons containing pair of opposite arcs, and D\R/S is the digraph
obtained by deleting and contracting the pair of opposite arcs in R and S, respectively.

Proof. The proof is straightforward using (3.4) and induction on |A′′|.

We now proceed to the proof of Theorem 7. The main idea of the proof involves eliminating
pair of opposite arcs using the proposition mentioned above and extract the highest degree term
of the B-polynomial.

Proof of Theorem 7. (⇐) We prove that if a digraph D(V,A) is not a symmetrization of any
undirected graph G, then its B-polynomial does not lie in Q[x, yz]. We treat BD(x, y, z) as a
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polynomial over x with coefficients in ring Q[y, z]. From (1.1), it follows that the largest exponent
of x in BD(x, y, z) is equal to the number of vertices of D. Since contraction of arcs reduces the
number of vertices, the largest exponent x|V | appears only in the summand where no pair of
opposite arcs is contracted, that is, when R = A′′ in (3.5). This leads to the following equality.[(

x

|V |

)]
BD(x, y, z) =

[(
x

|V |

)]
(yz)|A

′′|BD\A′′(x, y, z) = (yz)|A
′′|

∑
g∈Surj (V,|V |)

yascA′ (g)zdscA′ (g).

This implies that the leading coefficient of the B-polynomial of D is precisely (yz)|A
′′| times the

leading coefficient of D(V,A′). Hence it suffices to prove the existence of a |V |-coloring of D(V,A′)

with distinct number of ascents and descents. Since D ̸=
↔
G, the set of arcs A′ is non-empty. Let

uv ∈ A′ and f be any surjective |V |-coloring such that f(u) = |V |−1 and f(v) = |V |. If the number
of ascents and descents of f are distinct, we are done. Suppose to the contrary that asc(f) = dsc(f).
We define the coloring g obtained by interchanging the colors of u and v under f as follows:

g(w) =


|V | w = u,

|V | − 1 w = v,

f(w) otherwise.

Let fa (or fd) and ga (or gd) denote the multiset of arcs occurring as ascents (or descents) under
f and g, respectively. Note that the set of ascents and descents of f and g restricted to A′ \ {uv}
are the same, whereas {uv} = fa \ ga = gd \ fd. This implies that asc(g) = asc(f) − 1 and
dsc(g) = dsc(f) + 1, and consequently asc(g) ̸= dsc(g). Thus BD(x, y, z) /∈ Q[x, yz].

4 Distinguishing orientations of caterpillars

In this section, we show that the quasisymmetric B-function (henceforth abbreviated as QBF)
distinguishes certain orientations of proper caterpillars up to isomorphism. Moreover, we prove
that all orientations of the paths and asymmetric proper caterpillars are reconstructible up to
isomorphism from their QBFs.

An equivalent characterization of a caterpillar is that it is a tree where deletion of all its pendant
vertices results in a path. This resultant path is in fact the spine of the caterpillar. For a caterpillar
C, we denote its spine by ⟨v1, v2, . . . , vℓ⟩ that starts at v1 and ends at vℓ. Let uk1, uk2, . . . denote the
pendant vertices adjacent to vk. Let Comp(C) be the unique integer composition (α1, α2, . . . , αℓ)
associated to C such that for i = 1, 2, . . . , ℓ, the spine vertex vi has exactly αi − 1 many neighbors
with degree 1. Note that the integer compositions associated with isomorphic caterpillars are either
the same or reverses of each other.

For an oriented caterpillar C
→

and its spine vertex vk, let Ok and Ik denote the number of
outgoing and incoming pendant arcs of vk. The tuple P (vk) := (Ok, Ik) is called as the pendant
vector of the spine vertex vk. For instance, the pendant vector of the spine vertex v4 in Figure
4 is (2, 1). Note that any orientation of a fixed caterpillar C is uniquely determined by (a) the
orientation of the spine ⟨v1, v2, . . . , vℓ⟩, and (b) the pendant vector P (vk) of each spine vertex vk.

For an integer composition δ ⊨ |V (T )|, let FT (δ) denote the set of surjective colorings of T
having type δ with exactly ℓ(δ) − 1 many non-monochromatic edges. The following observations
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v1 v2 v3 v4 v5 v6 v7

u11 u21 u31 u32 u41 u42 u43 u51 u61 u62 u71

Fig. 4: An oriented proper caterpillar with associated composition (2, 2, 3, 4, 2, 3, 2).

enable us to characterize the colorings of trees, their non-monochromatic arcs and the corresponding
monomials.
Observation 9. Let T (V,E) be a tree and β = (β1, β2, . . . , βk) be an integer composition of |V |.
Then
(a) A coloring f is in FT (β) if and only if the deletion of its non-monochromatic edges results in

k many connected components of orders β1, β2, . . . , βk.
(b) If each component of β is greater than 1, then the endpoints of the non-monochromatic edges

of colorings in FT (β) must have degree greater than 1 in T . Particularly for caterpillars, the
non-monochromatic edges of such colorings must lie on the spine.

The above observations follow from the fact that every edge of a tree is a cut-edge. We begin
with the classification of the spine edges of all caterpillars according to the partial sums of the
corresponding integer compositions. Let C(V,E) be a caterpillar with associated composition
Comp(C) = (α1, α2, . . . , αℓ). For p = 1, 2, . . . , ℓ, let Lp :=

∑p
i=1 αi and Rp :=

∑p
i=1 αℓ−i+1 be the

left and right justified partial sums of Comp(C), respectively. We now define the bilateral edges
based on the equality of these partial sums. Let

B =
{
(p, p′) ∈ [ℓ]× [ℓ]

∣∣ Lp = Rp′ and Lp, Rp′ ≤ ⌊|V |/2⌋
}
.

For (p, p′) ∈ B, let Bp,p′ denote the set of edges
{
{vp, vp+1}, {vℓ−p′ , vℓ−p′+1}

}
. We call Bp,p′ as a

bilateral set, and a spine edge is said to be bilateral if it belongs to Bp,p′ for some 1 ≤ p, p′ ≤ ℓ.
Note that |Bp,p′ | is either one or two, and the former scenario occurs if and only if |V | is even and
Lp = Rp′ = |V |/2. For an oriented caterpillar, we denominate the orientation of the bilateral set
Bp,p′ according to its bilateral edges as follows:

Definition 10. Let
→
C(V,E) be an oriented caterpillar. For 2 ≤ Lp = Rp′ ≤ ⌊|V |/2⌋, the bilateral

set Bp,p′ admitting the orientation
• {vpvp+1, vℓ−p′vℓ−p′+1} are called right directed (Figure 5:(i)),
• {vp+1vp, vℓ−p′+1vℓ−p′} are called left directed (Figure 5:(ii)),
• {vpvp+1, vℓ−p′+1vℓ−p′} is called inward directed (Figure 5:(iii)),
• {vp+1vp, vℓ−p′vℓ−p′+1} is called outward directed (Figure 5:(iv)).

A bilateral set is called uni-directed if it is either left directed or right directed. For example, the
bilateral sets B1,1 and B3,3 in Figure 4 are inward and right directed, respectively.

The following proposition asserts that the orientation of the spine arcs can be read from the
multiset Mon1(s, |V | − s) up to uni-direction of bilateral sets.

Proposition 11. Let
→
C(V,E) be an oriented caterpillar with Comp(C) = (α1, α2, . . . , αℓ). For

Lp, Rp′ ≤ ⌊|V |/2⌋ such that the arcs with endpoints {vp, vp+1} and {vℓ−p′ , vℓ−p′+1} are not
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vp vp+1 vℓ−p′ vℓ−p′+1

(i) {vpvp+1, vℓ−p′vℓ−p′+1}

vp vp+1 vℓ−p′ vℓ−p′+1

(ii) {vp+1vp, vℓ−p′+1vℓ−p′}

vp vp+1 vℓ−p′ vℓ−p′+1

(iii) {vpvp+1, vℓ−p′+1vℓ−p′}

vp vp+1 vℓ−p′ vℓ−p′+1

(iv) {vp+1vp, vℓ−p′vℓ−p′+1}
Fig. 5: Orientations of the bilateral set Bp,p′ .

bilateral, the multiset

Mon1(Lp, |V | − Lp) =

{
{y} iff vpvp+1 ∈ A,

{z} iff vp+1vp ∈ A.
(4.6)

and

Mon1(Rp′ , |V | −Rp′) =

{
{y} iff vℓ−p′+1vℓ−p′ ∈ A,

{z} iff vℓ−p′vℓ−p′+1 ∈ A.
(4.7)

For the bilateral set Bp,p′ with s = Lp = Rp′ , we have

Mon1(s, |V | − s) =


{y, z} iff Bp,p′ is uni-directed,

{2y} iff Bp,p′ is inward directed,

{2z} iff Bp,p′ is outward directed.

(4.8)

Proof. According to Observation 9(b), the non-monochromatic edges of the colorings from
FC(Lp, |V | − Lp) and FC(Rp′ , |V | − Rp′) are {vp, vp+1} and {vℓ−p′ , vℓ−p′+1}, respectively. The
coloring(s) in FC(Lp, |V | − Lp) (resp. FC(Rp′ , |V | − Rp′)) assigns color 1 to the vertex vp (resp.
vℓ−p′+1). Therefore, the orientations of the non-monochromatic edges correspond to the asserted
multisets in (4.6), (4.7) and (4.8).

This leads us to the following corollary.

Corollary 12. Let C
→

(V,E) be an oriented caterpillar. If none of the bilateral set Bp,p′ of C
→

is
uni-directed, then the orientation of the spine can be determined by the QBF.

It is worth noting that the information of the non-uni-directed bilateral sets, along with the
already known digraph-statistics from the QBF like in-out degree sequence and height-profile are
insufficient to distinguish the orientation of the spine. In fact, there exist non-isomorphic orienta-
tions of paths that agree on the above quantities (see Figure 2). Therefore the determination of
uni-directed bilateral sets is crucial and non-trivial. By imposing certain conditions on the under-
lying caterpillars, we show that the orientations of the spine including the uni-directed bilateral
sets can be reconstructed from the QBF.

4.1 Proper caterpillars

Recall that a caterpillar is said to be proper if every vertex of the spine is adjacent to at least one
pendant vertex. Equivalently, they are the caterpillars whose associated compositions have each
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component of size at least two. The advantage of studying the proper caterpillars over non-proper
caterpillars is that the composition corresponding to proper caterpillars have all parts greater than
1. Therefore the compositions obtained by adding some consecutive components must also have all
parts greater than 1. From Observation 9(b), it follows that the non-monochromatic edges of the
colorings of these type always lie on the spine. This avoids the conflict arising due to the involvement
of the pendant vector while retrieving the spine. With this, we begin with reconstructing the spine
of the proper caterpillars.
Proposition 13. The orientation of the spine of oriented proper caterpillars can be reconstructed
from their quasisymmetric B-functions.

Proof. Let C
→

be an orientation of a proper caterpillar C such that Comp(C) = (α1, α2, . . . , αℓ) is
lexicographically smaller than its reverse. Let θ be the least positive integer (if exists) such that
Bθ,θ′ is uni-directed. In the first step of the proof, we use Bθ,θ′ as our pivot to determine whether
the other bilateral sets are oriented in the same direction as Bθ,θ′ or not. In the second step, we aim
to determine the direction of this Bθ,θ, which will in turn discern the orientation of every other uni-
directional bilateral set. Let π be the least positive integer (if exists) such that the edge {vπ, vπ+1}
is not a bilateral edge. The choice of Comp(C) being lexicographically smaller than its reverse
implies Lπ ≤ ⌊|V/2|⌋. Since the orientation of the non-uni-directed bilateral sets is determined by

QBF (from Proposition 11), the orientation of edge {vπ, vπ+1} in C
→

is known. This arc acts as our
pivot in the second step to determine the orientation of the uni-directed bilateral set Bθ,θ′ .

Any two uni-directed bilateral sets of C
→

are said to be in unison if either both are left directed
or both are right directed.
(Step I): We proceed by induction on s ∈ {Lp | Bp,p′ is uni-directed, p ≥ θ, p′ ≥ θ′}. Suppose that
for all q < p and q′ < p′, we know whether Bq,q′ is in unison with Bθ,θ′ or not. To determine the
direction of Bp,p′ , we consider the surjective 3-colorings whose non-monochromatic arcs belong to
Bp,p′ or Bθ,θ′ . In particular, to have{

{vθ, vθ+1}, {vp, vp+1}
}
or

{
{vℓ−θ′ , vℓ−θ′+1}, {vℓ−p′ , vℓ−p′+1}

}
(4.9)

as non-monochromatic edges, the natural choice would be to consider the colorings such that
removal of their non-monochromatic edges results in connected components of order Lθ, Lp−Lθ and
|V |−Lp. While doing so, we may encounter some other colorings in this set. However by induction
hypothesis, the orientations of the non-monochromatic edges of these intermediary colorings are
already known. The occurrence of the intermediary arcs is based on whether Lp − Lθ occurs as
a partial sum of parts of Comp(C). The proof follows from the case-by-case analysis of the non-
monochromatic arcs of these intermediary colorings. We accomplish this by considering set of
colorings FC(Lθ, Lp − Lθ, |V | − Lp) or FC(Lθ, |V | − Lp, Lp − Lθ). We show that for each possible
orientation of intermediary arcs, the multisets associated with the unison of Bp,p′ and Bθ,θ′ differs
from the case when they are not in unison. If none of the partial sum of the parts equal Lp − Lθ,
then

Mon2(Lθ, |V | − Lp, Lp − Lθ) =

{
{2yz} if Bp,p′ and Bθ,θ′ are in unison,

{y2, z2} otherwise.

(Case 1): Lp − Lθ = Lq = Rq′ for some q ≤ p and q′ ≤ p′.
The computation of monomials in Mon2(Lθ, Lp − Lθ, |V | − Lp) and Mon2(Lθ, |V | − Lp, Lp − Lθ)
in accordance with Table 1 (where i = θ, j = p and k = q) lead to the following. In the first three
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Colorings Spine vertices corresponding to color classes
v1, . . . , vi vi+1, . . . , vj vj+1, . . . , vℓ

g1 1 2 3
f1 1 3 2

v1, . . . , vi vi+1, . . . , vℓ−k′ vℓ−k′+1, . . . , vℓ
g2 1 3 2
f2 1 2 3

v1, . . . , vk vk+1, . . . , vj vj+1, . . . , vℓ
g3 2 1 3
f3 3 1 2

v1, . . . , vk vk+1, . . . , vℓ−i′ vℓ−i′+1, . . . , vℓ
g4 2 3 1
f4 3 2 1

v1, . . . , vℓ−j′ vℓ−j′+1, . . . , vℓ−k′ vℓ−k′+1, . . . , vℓ
g5 3 1 2
f5 2 1 3

v1, . . . , vℓ−j′ vℓ−j′+1, . . . , vℓ−i′ vℓ−i′+1, . . . , vℓ
g6 3 2 1
f6 2 3 1

Table 1: Set of colorings FC(Li,Lj −Li, |V | − Lj) = {g1, g2, . . . , g6} and
FC(Li, |V | − Li, Lj − Li) = {f1, f2, . . . , f6} where Li = Ri′ , Lj = Rj′ and
Lj −Li = Lk = Rk′ .

rows of the following computation table, we calculate the multiset Mon2(Lθ, Lp − Lθ, |V | − Lp),
while the last row represents the multiset Mon2(Lθ, |V | − Lp, Lp − Lθ).

Orientation of Bq,q′ Bp,p′ is in unison with Bθ,θ′ Bp,p′ is not in unison with Bθ,θ′

inward directed {2y2, 2yz, 2z2} {y2, 4yz, z2}
outward directed {2y2, 2yz, 2z2} {y2, 4yz, z2}
not in unison with Bθ,θ′ {3y2, 3z2} {y2, 4yz, z2}
unison with Bθ,θ′ {y2, 4yz, z2} {3y2, 3z2}

(Case 2): Either Lp − Lθ is equal to Lp for some q ≤ p, or Rq′ for some q′ ≤ p′ (but not both).
Apart from (4.9), the other non-monochromatic edges of the colorings in FC(Lθ, |V |−Lp, Lp−Lθ)
are {

{vq, vq+1}, {vp, vp+1}
}
,
{
{vq, vq+1}, {vℓ−θ′ , vℓ−θ′+1}

}
if Lp − Lθ = Lq,{

{vℓ−q′ , vℓ−q′+1}, {vp, vp+1}
}
,
{
{vℓ−q′ , vℓ−q′+1}, {vℓ−θ′ , vℓ−θ′+1}

}
if Lp − Lθ = Rq′ .

Therefore, when vqvq+1 or vℓ−q′+1vℓ−q′ occur in C
→

, we have

Mon2(Lθ, |V | − Lp, Lp − Lθ) =

{
{3yz, z2} if Bp,p′ and Bθ,θ′ are in unison,

{y2, yz, 2z2} if Bp,p′ and Bθ,θ′ are not in unison.

11



v1 v2 v3 v4 v5 v6

(a) A partially symmetric orientation with pivot
v2v1 and uni-directed bilateral sets B2,1 and B3,2.

v1 v2 v3 v4 v5 v6

(b) A partially symmetric orientation with pivot
v2v3 and uni-directed bilateral sets B1,1 and B3,2.

Fig. 6: Proper caterpillars with associated compositions (a) (2,2,2,2,2,4) and (b) (2,2,2,2,4,2).

Otherwise if vq+1vq or vℓ−q′vℓ−q′+1 occur in C
→

, we get

Mon2(Lθ, |V | − Lp, Lp − Lθ) =

{
{y2, 3yz} if Bp,p′ and Bθ,θ′ are in unison,

{2y2, yz, z2} if Bp,p′ and Bθ,θ′ are not in unison.

Since the multisets associated with the unison of Bp,p′ and Bθ,θ′ are distinct from the case
when they are not in unison, we conclude that the uni-directed bilateral arcs that are in unison
with Bθ,θ′ can be determined from the QBF.

Note that if the underlying proper caterpillar C is a palindrome, then every edge is a bilateral
edge. Therefore, by assuming Bθ,θ′ being right directed, we are fixing an orientation from the

isomorphism class of C
→

, and the direction of every other bilateral set in this orientation can be
determined. Thus, if Comp(C) is a palindrome, then orientation of spine can be reconstructed from
(Step I). We now proceed to determine the direction of Bθ,θ′ when the underlying composition is
not a palindrome.
(Step II): The direction of Bθ,θ′ is discerned by comparing it with the orientation of the pivot
non-bilateral edge {vπ, vπ+1}. Note that the edge {vπ, vπ+1} may occur either before or after the
bilateral edge {vθ, vθ+1} on the spine (see Figure 6), that is, either π < θ (in the former scenario)
or π > θ (in the latter scenario).

For π < θ, the computations are based on the Table 1 with i = π, j = θ and k = q.
(Case 1.a): Suppose π < θ, and Lθ − Lπ is not a partial sum of components of Comp(C).
The multiset Mon2(Lπ, |V |−Lθ, Lθ−Lπ) contains a unique monomial contributed by the coloring
with non-monochromatic edge set

{
{vπ, vπ+1}, {vθ, vθ+1}

}
. From Table 1, we conclude that

Mon2(Lπ, |V | − Lθ, Lθ − Lπ) =


{y2} if vπvπ+1 ∈ A and Bθ,θ′ is right directed,

{z2} if vπ+1vπ ∈ A and Bθ,θ′ is left directed,

{yz} otherwise.

(Case 1.b): Let Lθ − Lπ be either Lq or Rq′ (but not both) for some 1 ≤ q ≤ θ and 1 ≤ q′ ≤ θ′.
The distinctness of the multiset Mon2(Lπ, |V |−Lθ, Lθ−Lπ) is exhibited in the respective scenarios
by the following:

12



vπvπ+1 vπ+1vπ
right directed left directed right directed left directed

vqvq+1 {2yz} {2y2} {yz, z2} {y2, yz}
vq+1vq {yz, z2} {y2, yz} {2z2} {2yz}
vℓ−q′vℓ−q′+1 {y2, 2yz} {3y2} {2yz, z2} {y2, 2yz}
vℓ−q′+1vℓ−q′ {2yz, z2} {y2, 2yz} {3z2} {2yz, z2}

Bθ,θ′

where the first two rows and the last two rows corresponds to Lθ−Lπ being Lq or Rq′ , respectively.
(Case 1.c): Let Lθ − Lπ = Lq = Rq′ for some 1 ≤ q ≤ θ and 1 ≤ q′ ≤ θ′.
By the choice of Bθ,θ′ (least uni-directed bilateral set), the bilateral sets Bq,q′ must be either
inward directed or outward directed. The monomials computed using Table 1 gives the following:

vπvπ+1 vπ+1vπ

right directed left directed right directed left directed

inward directed {3yz, z2} {y2, 2yz, z2} {yz, 3z2} {2yz, 2z2}
outward directed {2y2, 2yz} {3y2, yz} {2yz, 2z2} {y2, 3yz}

Bq,q′
Bθ,θ′

where the the multiset Mon2(Lθ, |V | −Lπ, Lπ −Lθ) is computed corresponding to the orientation
of Bq,q′ , Bθ,θ′ and {vπ, vπ+1}. This concludes that the direction of Bθ,θ′ can be reconstructed when
the pivot arc {vπ, vπ+1} occurs before the bilateral set Bθ,θ′ .

We now proceed with the final case, that is θ < π. The monomials are computed using Table
1 with i = θ, j = π and k = q.
(Case 2.a): If Lπ−Lθ is not equal any partial sum, then the multisets Mon2(Lθ, |V |−Lπ, Lπ−Lθ)
is the same as (Case 1.a) with the roles of θ and π interchanged.
(Case 2.b): Suppose Lπ − Lθ = Lq = Rq′ for some 1 ≤ q ≤ π and 1 ≤ q′ ≤ π′. We resolve this
case pertaining to the orientation of the bilateral set Bq,q′ . The colorings from the first four rows
of Table 1 contribute the monomials occurring in the multisets.

vπvπ+1 vπ+1vπ

right directed left directed right directed left directed

inward directed {3yz, z2} {2yz, 2z2} {y2, yz, 2z2} {2yz, 2z2}
outward directed {2y2, 2yz} {2y2, yz, z2} {2y2, 2yz} {y2, 3yz}
unison with Bθ,θ′ {y2, 2yz, z2} {2y2, 2z2} {2y2, yz, z2} {y2, 2yz, z2}
not in unison with Bθ,θ′ {3y2, z2} {y2, 2yz, z2} {y2, 2yz, z2} {y2, 3z2}

Bq,q′
Bθ,θ′

where the multiset Mon2(Lθ, |V | − Lπ, Lπ − Lθ) is computed for the first three rows, and the last
row corresponds to the multiset Mon2(Lθ, Lπ − Lθ, |V | − Lπ).

For fixed orientations of {vπ, vπ+1} and Bq,q′ , the multisets corresponding to Bθ,θ′ being right
directed and left directed are distinct. Therefore the orientation of Bθ,θ′ can be reconstructed. This
completes the proof.

The following corollary is an immediate consequence of the above Proposition.
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Corollary 14. The orientations of paths can be reconstructed from their quasisymmetric
B-function up to isomorphism.

Proof. We associate the integer composition (1, 1, . . . , 1) of length |V | to the oriented path P
→

(V,A).
The orientations of the bilateral sets Bp,p for p = 1, 2, . . . , ⌊|V |/2⌋ can be obtained from (4.8) up to
uni-direction. The method for determining the uni-directed bilateral sets is identical to the (Step
I) in the proof of Proposition 16.

Even though the non-uni-directed bilateral sets are straightforward to determine from the QBF,
they cause hindrance in recovering the pendant vectors (see Figure 7). This imposes the constraint
of considering orientations of proper caterpillars in which certain pendant vectors corresponding
to inward and outward directed bilateral sets exhibit symmetry.

Definition 15. Let C be a proper caterpillar. An orientation C
→

is said to be partially symmetric if
for every inward and outward directed bilateral set Bp,p′ , the pendant vectors P (vp) and P (vℓ−p′+1)
are equal. We denote the set of isomorphism classes of partially symmetric orientation of C by
O(C).

The oriented proper caterpillar in Figure 4 is a partially symmetric orientation, whereas the
oriented caterpillars in Figure 7 are not. We now prove that the pendant vectors in partially
symmetric orientations of proper caterpillars can be retrieved from the QBF.
Theorem 16. The partially symmetric orientations of proper caterpillars can be reconstructed
from their quasisymmetric B-functions.

Proof. We have already established the reconstruction of spine in Proposition 13. It suffices to prove
that the pendant vectors in partially symmetric orientations can be determined by their QBF. Let

C
→

be a partially symmetric orientation of a proper caterpillar C. The idea involves consideration of
in-out degree sequence of the digraph, and surjective 3-colorings whose non-monochromatic edges
comprise of one spine edge and one pendant edge. In particular, we are examining the multiset
Mon(1, |V |−1), and colorings in which the deletion of non-monochromatic edges leads to connected
components of sizes either 1, Lp − 1 and |V | − Lp, or 1, Rp′ − 1 and |V | −Rp′ .

We prove by induction on s ∈
{
Lp, Rp′ | 2 ≤ Lp, Rp′ ≤ ⌊|V |/2⌋ and p, p′ ≥ 1

}
where the

Comp(C) is lexicographically smaller than its reverse. We prove the base step by using the multiset
Mon2(1, |V |−1) that encodes the in-out degree sequence of the vertices of degree 2 (see (2.3)). For
the base step s = 2, we have either s = L1 ̸= R1 or s = L1 = R1. In the former scenario, v1 is the
unique vertex of degree 2 in C, and therefore the multiset

Mon2(1, |V | − 1) =


{y2} iff v1v2 ∈ A and P (v1) = (1, 0),

{z2} iff v2v1 ∈ A and P (v1) = (0, 1),

{yz} otherwise.

In the latter case, v1 and vℓ are the only vertices of degree 2, and we have four possibilities for
the orientation of B1,1. The following computation table depicts that in all four cases, the multiset
Mon2(1, |V | − 1) containing the in-out degree sequence of v1 and vℓ distinguishes the occurrences
of the pendant vectors of P (v1) and P (vℓ) in partially symmetric orientations.
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Orientation of bilateral set B1,1

right directed left directed inward directed outward directed

P (v1) P (vℓ) P (v1) P (vℓ) P (v1) P (vℓ) P (v1) P (vℓ)

(1, 0) (0, 1) (0, 1) (1, 0) {y2, z2}
(1, 0) (1, 0) (1, 0) (1, 0) {y2, yz}
(0, 1) (0, 1) (0, 1) (0, 1) {yz, z2}
(0, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0) {2yz}

(1, 0) (1, 0) {2y2}
(0, 1) (0, 1) {2z2}

Mon2(1, |V | − 1)

Assume by induction that we already have the knowledge of the pendant vectors P (vq)
and P (vℓ−q′+1) for Lq, Rq′ < s. Now, consider the case where s = Lp = Rp′ . According
to Observation 9, we deduce that the set of non-monochromatic edges of the colorings in
FC(s − 1, |V | − s, 1) are

{
{vp, vp+1}, {vq, uqi}

}
or

{
{vℓ−p, vℓ−p+1}, {vℓ−q′+1, uℓ−q′+1 i}

}
for

q = 1, 2, . . . , p and q′ = 1, 2, . . . , p′. Let [y2], [z2] and [yz] denote the multiplicity of y2, z2 and yz
in Mon2(s− 1, |V | − s, 1) respectively. Then, the partial sums of pendant vectors are given by:

p∑
k=1

P (vk) =

{
([y2], s− p− [y2]) if Bp,p′ is right directed,

(s− p− [z2], [z2]) if Bp,p′ is left directed.
(4.10)

p′∑
k=1

P (vℓ−k+1) =

{
(s− p′ − [z2], [z2]) if Bp,p′ is right directed,

([y2], s− p′ − [y2]) if Bp,p′ is left directed.
(4.11)

p∑
k=1

P (vk) +

p′∑
k=1

P (vℓ−k+1) =

{
([y2], [yz]) if Bp,p′ is inward directed,

([yz], [z2]) if Bp,p′ is outward directed.
(4.12)

This implies that we can determine both P (vp) and P (vℓ−p′+1) when Bp,p′ is uni-directed. On the
other hand, if {vp, vp+1} and {vℓ−p′ , vℓ−p′+1} are not bilateral edges, then (4.10) and (4.11) can
be used to derive the pendant vectors of P (vp) and P (vℓ−p′+1) as well. However, when Bp,p′ is
not uni-directed, we can extract P (vp) + P (vℓ−p′+1), and therefore compute the pendant vectors

of both vertices vp and vℓ−p′+1 when C
→

is a partially symmetric orientation. Note that if |V |/2 /∈
{Lp}ℓp=1, then there exist a unique spine vertex vt such that Lt−1 ≤ ⌊|V |/2⌋ < Lt (For example,
in Figure 4, the partial sum L3 ≤ 8 < L4). The equations mentioned above cover the computation
of all pendant vectors except for P (vt). Nonetheless, we can determine this pendant vector by
subtracting

∑
k∈[ℓ]\{t} Ik and

∑
k∈[ℓ]\{t} Ok from the multiplicity of y and z in the degree multiset

Mon(1, |V | − 1), respectively. Thus, the orientation of C
→

can be reconstructed from the QBF up
to isomorphism.
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4.2 Asymmetric Proper Caterpillars.

Recall the Definition 5(b) of asymmetric proper caterpillars, which dictates that the components
of their associated composition must be distinct. We show that all oriented asymmetric proper
caterpillars can be reconstructed from their QBFs. We use the fact that no more than two pairs
of non-pendant vertices can have the same degree. Consequently, we can sequentially compute
the pendant vectors by removing the terms contributed by the spine arcs connected to each spine
vertex.
Theorem 17. Let C

→
(V,A) be an oriented asymmetric proper caterpillar. Then C

→
can be

reconstructed from its quasisymmetric B-function up to isomorphism.

Proof. Without loss of generality, we assume that Comp(C) = (α1, α2, . . . , αℓ) is lexicographically
smaller than its reverse. For i = 1, 2, . . . , ℓ, let hi be the coloring in FC(1, |V | − 1) that assigns the
unique color 1 to the spine vertex vi. Thus, we have

mhi
:= yasc(hi)zdsc(hi) = youtdegree of vi zindegree of vi (4.13)

From Proposition 13, the orientation of spine of C
→

is known. This implies that the above monomials
can be computed from the pendant vector of the vertices. On the other hand, the internal vertices
can be identified with their unique corresponding monomials due to the equality of degree, and the
pendant vector of such vertices can be retrieved by the following:

P (vi) =



(degy
mhi

y2
, degz

mhi

y2
) if vivi−1, vivi+1 ∈ A,

(degy
mhi

z2
, degz

mhi

z2
) if vi−1vi, vi+1vi ∈ A,

(degy
mhi

yz
, degz

mhi

yz
) otherwise.

(4.14)

Due to asymmetry of the caterpillar, all the monomials in Mon(1, |V |−1)\{mh1 ,mhℓ
} have distinct

total degrees. Consequently, we can easily identify the corresponding internal vertices and compute
their pendant vectors using (4.14). Therefore it suffices to compute the pendant vertices P (v1) and
P (vℓ). Note that α1 ̸= αℓ implies that {v1, v2} is not a bilateral edge, allowing us to compute P (v1)
from Theorem 16. Furthermore, the pendant vector for P (vℓ) can be determined using Theorem
16, except when a non-uni-directed bilateral set Bk,1 exists. However, when there exists a non-uni-

directed bilateral set Bk,1, we use (4.12) to determine the partial sum P (vℓ) +
∑k

i=1 P (vi). Since
the P (v1) is known, and the degree of the internal vertices v2, v3, . . . , vk are less than deg(vℓ), their
corresponding monomials in Mon(1, |V |− 1)\{mh1} can be identified. This enables us to compute
the pendant vectors of the internal vertices v2, v3, . . . , vk, and as a result, the pendant vector P (vℓ)
can be computed as well. This completes the proof.

5 Future prospects

Partially symmetric orientations constitute a large class of orientations for proper caterpillars.
Furthermore, for each proper caterpillar and its non-partially symmetric orientation (up to iso-
morphism), we can associate distinct partially symmetric orientations (up to isomorphism) by
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replacing inward and outward directed bilateral sets with right and left directed bilateral sets,
respectively. In other words, partially symmetric orientations constitute more than half of the
orientations for proper caterpillars. Moreover, for certain proper caterpillars, every orientation is
partially symmetric. Examples include caterpillars with associated compositions (4, 4), (2, 3, 3) and
(2, 2, 4).

However, the statistics discussed in Section 4 are insufficient to distinguish non-partially sym-
metric orientations. Figure 7 exhibits two non-isomorphic oriented proper caterpillars for which the
statistics discussed in the proofs of Theorem 16 are equal, but their corresponding QBFs are dis-
tinct. Also, we do not know how to distinguish partially symmetric orientations from non-partially

Fig. 7: Two non-isomorphic graphs having the same in-out degree sequence, height-profile and
aforementioned statistics.

symmetric orientations. Nevertheless, we believe that the method to distinguish these two types of
orientations will shed light on reconstructing the non-partially symmetric orientations. We would
like to highlight that the proof was based on examining monomials of degree at most 2 of surjective
3-colorings and the degree-multiset. Moreover, the methods used in Proposition 13 and Theorem
16 can be applied to determine the partial orientation of trees in which vertices with a degree of
at least 3 induce a path. In particular, certain orientations of proper q-caterpillars [17], introduced
by the author and others, can be reconstructed from their QBFs. Computational evidence sug-
gests that the higher degree terms can distinguish the non-partially symmetric orientations, but
providing their combinatorial interpretation with respect to the caterpillar is a tedious task. As
mentioned earlier, the challenge in studying non-proper caterpillars lies in dealing with the pres-
ence of pendant arcs while investigating the orientation of the spine. However, we hope that one
may overcome this obstacle by considering the examination of various coefficients together.

Note that the B-polynomial of a digraph D and its reverse rev(D) are the same. Investigating
the uniqueness of B-polynomials of digraphs up to isomorphism and reversal is an interesting
question worth exploring.
Question 18. Does the B-polynomial distinguish acyclic digraphs up to isomorphism and
reverses?

The computations using SageMath affirm the question above for oriented trees up to order 8.
Next, we pose a conjecture regarding identification of self-reverse (digraphs satisfying D ≃

rev(D)) digraphs by their QBFs. It is evident from the definition that the quasisymmetric B-
functions of both D and rev(D) satisfy BD(x; y, z) = Brev(D)(x; z, y). Consequently, when the
digraph D is self-reverse, we have

BD(x; y, z) = Brev(D)(x; y, z) = BD(x; z, y). (5.15)

This implies that the quasisymmetric B-function of self-reverse digraphs is symmetric with
respect to the variables y and z, or equivalently, it can be expressed as a function of x, y + z, and
yz. This observation leads to the following conjecture:
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Conjecture 19. The quasisymmetric B-function of digraph D is symmetric with respect to the
variables y and z if and only if D is isomorphic to the digraph rev(D).

Observe that the characterizing properties of self-reverse proper caterpillars are (a) the under-
lying caterpillar is a palindrome, (b) all the bilateral sets are uni-directed and (c) the pendant
vector (Ok, Ik) = (Iℓ−k+1, Oℓ−k+1) for all k = 1, 2, . . . , ⌈ℓ/2⌉. The proof of Theorem 16 demon-
strates the equivalence between the symmetry of variables y and z, and the conditions mentioned
above. This implies the validity of the Conjecture 19 for oriented proper caterpillars and paths.

The methods used to prove Theorems 16 and 17 relied on the assumption that the underlying
graph is a tree. An intriguing avenue of research would be to explore these questions in the context
of non-tree graphs, particularly Question 4. In [13], various classes of unicyclic graphs, such as
asymmetric crabs and squids, were shown to be distinguishable by chromatic symmetric functions.
We believe that our methods hold the potential to provide insights into the reconstruction of
orientations of these unicyclic graphs. For example, given a fixed asymmetric crab containing a
directed cycle, its orientations can be uniquely determined by the in-out degree sequence (and
using (4.14)).

Regarding the study of equality of quasisymmetric B-function, the construction of non-
isomorphic graphs with equal Tutte symmetric function in [18] leads to the following non-
isomorphic digraphs with equal quasisymmetric B-function (verified using SageMath). Moreover,
these digraphs contain a unique pair of opposite arcs.

Fig. 8: Non-isomorphic digraphs with the same quasisymmetric B-function and containing a
unique directed cycle.

We conclude with the following questions regarding digraphs with equal quasisymmetric B-
functions.
Question 20. Does there exist
(a) infinitely many pairs of non-isomorphic digraph containing a unique directed 2-cycle and equal

quasisymmetric B-function?
(b) pair of non-isomorphic digraphs without containing a 2-cycle and equal quasisymmetric B-

function?
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