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5.3 Solvability by Radicals

We are interested in studying polynomials whose roots can be expressed in04/23/20

terms of radicals over the ground field K. Such is the case for any polynomial
of degree 2, using the quadratic equation (provided char(K) 6= 2). Similarly,
there is a cubic radical formula for any polynomial of degree 3, in character-
icstic 6= 2, 3. Roots of polynomials of degree 4 can be found using the cubic
formula.

We are going to need a result on linear independence of characters.

Definition 5.6 A linear character of a group G with values in a field K is
a group homomorphism � : G ! K⇥ from G to the multiplicative group of
K.

Theorem 5.18 Let G be a group and K a field. The set Hom(G,K⇥), as
a subset of the vector space KG, is linearly independent. In other words,
any family (�i|i 2 I) of distinct characters of G with values in K is linearly
independent over K.

Proof. Suppose otherwise, and let �1, . . . ,�m be a minimal dependent set
with dependence relation

a1�1 + · · ·+ am�m = 0.

By minimality, we must have ai 6= 0 for i = 1, . . . ,m. For any g 2 G we have

a1�1(g) + · · ·+ am�m(g) = 0 (5.2)

and since each �i(g) 6= 0 we must also have m > 1. Let g0 2 G be such that
�1(g0) 6= �2(g0). Then

a1�1(g0g) + · · ·+ am�m(g0g) = 0

which yields
a1�1(g0)�1(g) + · · ·+ am�m(g0)�m(g) = 0 (5.3)

Multiplying (5.2) by �1(g0) and subtracting from (5.3) yields a dependence
relation on �2, . . . ,�m with the coe�cient of �2 equal to a2(�2(g0)��1(g0)) 6=
0, contradicting the minimality of �1, . . . ,�m.
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Corollary 5.19 Let K and L be fields. The set Hom(K,L) of all homomor-
phisms from K to L, is linearly independent over L. In particular Aut(K)
is linearly independent over K.

Exercise 5.3.1 Prove Corollary 5.19.

5.3.1 Radical Extensions

Definition 5.7 An extension K( n
p
a )/K with a 2 K and n � 1, is called

a radical extension. Note that the expression n
p
a is ambiguous, as the poly-

nomial xn � a may have several distinct roots. However, when K contains
n-th roots of unity, the expression K( n

p
a ) is unambiguous, as it contains all

the roots of xn � a, and is generated by any one of them.
A field tower K = K0  K1  · · ·  Kl with each Ki/Ki�1 a radical ex-
tension is called a radical tower. We say that Kl/K is a root extension and
that the elements of Kl can be expressed by radicals over K. We say that a
polynomial f(x) 2 K[x] is solvable by radicals, if all its roots can be expressed
by radicals over K.

Definition 5.8 A Galois extension F/K usually adopts as part of its name,
properties of the Galois group Gal(F/K). Thus, a cyclic extension is a Galois
extension whose Galois group is cyclic. Similarly, an abelian extension is a
Galois extension whose Galois group is abelian.

The following proposition can be stated, as: an extension F/K is a radical
extension i↵ it is a cyclic extension. This is not quite correct, without some
extra assumptions. More precisely,

Proposition 5.20 Let n 2 N and K a field such that charK 6 |n and it
contains n-th roots of unity.

1. For a 2 K, let F = K( n
p
a ). The extension F/K is cyclic of degree d,

a divisor of n.

2. Conversely, if F/K is cyclic of degree n, then F = K( n
p
a ) for some

a 2 K.
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The case when n is a multiple of charK needs a somewhat di↵erent treat-
ment. We avoid that case here.

Proof. 1. The statement hold trivially for a = 0, so assume a 6= 0. Since
K contains the n-th roots of unity, F is the splitting field of xn � a
over K. Since charK 6 |n, there are n distinct n-th roots of unity, so the
polynomial xn � a has n distinct roots n

p
a ⇠i, i = 0, . . . , n� 1 where ⇠

is a primitive n-root of unity. Therefore xn � a is separable and F/K
is Galois. Each � 2 Gal(F/K) is completely determined by �( n

p
a ),

which must be equal to n
p
a ⇠i� . Consider the map

Gal(F/K) ! Zn

� 7! i�

Clearly, this map is injective, and it is easy to check that it is a homo-
morphism, as ⌧�( n

p
a ) = ⌧( n

p
a ⇠i�) = n

p
a ⇠i⌧ ⇠i� = n

p
a ⇠i⌧+i� .

2. Let Gal(F/K) = h�i be cyclic of order n. For ↵ 2 F and ⇠ a primitive
n-th root of unity, define the Lagrange resolvent by

(↵, ⇠) := ↵ + ⇠�(↵) + ⇠2�2(↵) + · · ·+ ⇠n�1�n�1(↵). (5.4)

By Corollary 5.19, 1, �, �2, . . . , �n�1 are linearly independent over F ,

F

K(⇢)

K

so, we have

1 + ⇠� + ⇠2�2 + · · ·+ ⇠n�1�n�1 6= 0,

so there is ↵ 2 F such that (↵, ⇠) 6= 0. Let ⇢ := (↵, ⇠).
Since ⇠ 2 K we have �(⇢) = ⇠�1⇢, and �(⇢n) = ⇠�n⇢n = ⇢n,
so ⇢n 2 Fh�i = K. Moreover, for any 0 < i < n, �i(⇢) =
⇠�i⇢ 6= ⇢, so �i /2 AutK(⇢)F , i.e. AutK(⇢)F = {1} = AutFF ,

so F = K(⇢) = K( n
p
a ), where a = ⇢n 2 K.

Proposition 5.21 Let K be a field of characteristic 0, and ⇠n a primitive
n-th root of unity. K(⇠n)/K is Galois with Galois group contained in Un,
hence Abelian.
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Proof. Follows at once from Corollary 4.16 and Proposition 4.32 by consid-
ering the following diagram:

K(⇠n)

Q(⇠n) K

=======

Q

=======

Lemma 5.22 Let K be a field of characteristic 0.

1. If F and E are radical extensions of K then so are FE/F and FE/E,
so that K  F  FE and K  E  FE are radical towers.

2. If F and E are root extensions of K then so is FE.

3. If F is a root extension K then so is the normal closure L of F over
K.

Proof. 1. If E = K( n
p
a ), then FE = F ( n

p
a ).

2. Follows from repeated application of Part (1).

3. A root extension F/K is a finite extension. By Exercise 5.3.2 below,
its normal closure is also a finite extension, hence F/K has finitely
many conjugates in K, each of which is isomorphic to F/K and also
a root extension. The normal closure is the composite of these finitely
many root extension, so, by part (2), it is also a root extension.

Exercise 5.3.2 Let F/K be a finite extension, and L/K its normal
closure. Show that L/K is also a finite extension. Hint: if you write
E = K(↵1, . . . ,↵n), and let fi(x) = minK(↵i), show that L is the splitting
field of the set A = {f1(x), . . . , fn(x)}.
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5.3.2 Solvable Groups

We need to recall the following definitions and facts on solvable groups from04/28/20

Group Theory, Section 1.1.4.

Definition 5.9 The commutator series or derived series of a group G, de-
noted by (G(n)|n � 0), is defined recursevely by

G(0) := G, and G(n+1) :=
�
G(n)

�0
.

The group G is solvable if there is a k such that G(k) = 1. The smallest such
k is called the derived length or solvable length of G, and is denoted l(G).

The only group of solvable length zero is the trivial group. Groups of
solvable length 1 are precisely the non-trivial abelian groups. It is common
practice by some authors to say “solvable of length n” meaning “solvable of
length  n”; that way, one would say that abelian groups are precisely the
groups of solvable length 1. Solvable groups of length  2 are also called
metabelian.

Proposition 5.23 Let G be a group, H  G and N EG.

1. If G is solvable, then H is also solvable, and

l(H)  l(G).

2. G is solvable i↵ N and G/N are both solvable. In this case

l(G)  l(N) + l(G/N).

Definition 5.10 A normal series of a group G is a series

1 = H0 EH1 E · · ·EHn�1 EHn = G



5.3. SOLVABILITY BY RADICALS 131

Theorem 5.24 A group is solvable i↵ it has a normal series

1 = H0 EH1 E · · ·EHn�1 EHn = G (5.5)

with abelian factors, i.e. such that each Hi+1/Hi is Abelian.

The sequence (5.5) is called an Abelian series for G and n is called the
length of the series.

Examples 5.3.1 1. As already mentioned, every Abelian group is solv-
able, of length  1, and conversely.

2. Every cyclic-by-Abelian group is metabelian, i.e. solvable of length
 2. In particular the Galois group of the splitting field of xn � a over
a field of characteristic zero is solvable.

3. The group A5 is not solvable. In fact, any non-Abelian simple group
is non-solvable. It can be shown that A5 is in fact the smallest non-
solvable group, i.e. any group of order less than or equal to 59 is
solvable.

For finite groups we have a stronger condition for solvability.

Proposition 5.25 A finite group G is solvable i↵ there is a normal series

1 = H0 EH1 E · · ·EHn�1 EHn = G

with cyclic factors, i.e. such that each Hi+1/Hi is cyclic.

In other words, for finite groups, we can replace Abelian with cyclic in
the definition of solvable.

Exercise 5.3.3 1. Prove Proposition 5.25.

2. Show, with a counterexample, that for infinite groups the two condi-
tions are not be equivalent.

The class of solvable groups has been extensively studied. One can refer
to Proposition 5.23 above, by saying that the class of solvable groups is closed
under subgroups, quotients and extensions. In particular,
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Corollary 5.26 If G and H are solvable groups then so is their direct product
G⇥H.

Hence, the class of solvable groups is closed under finite products.

Exercise 5.3.4 1. Prove Corollary 5.26.

2. Show that the class of solvable groups is not closed under arbitrary
products.

Using the fact that An is non-abelian simple for n � 5, and computing
the derived series of Sn for n  4, one gets the following.

Proposition 5.27 The group Sn is solvable i↵ n  4.
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5.3.3 Solvable by Radicals

We now go back to the main result of this section, the characterization of 04/30/20

polynomials which are solvable by radicals.

Theorem 5.28 Let K be a field of characteristic 0, and f(x) 2 K[x]. Let F
be the splitting field of f(x). The polynomial f(x) is solvable by radicals i↵
Gal(F/K) is a solvable group.

Proof. ()) Each root a of f(x) is contained in a root extension, i.e. at the
top of a radical tower. Taking the join of all those root extensions, yields a
root extension by Lemma 5.22.2, which contains all the roots of f(x). Write
the radical tower for this root extension as

K = K0  K1 · · ·  Kn

Lu = L

En = Ln

................

F  Kn

Ei = Li

................

Ki

................
Ei�1 = Li�1

Ki�1

K1

.....
K(⇠m) = E0 = Lo

................

K = K0

with Ki+1 = Ki( mi
p
ai ) for some ai 2 Ki, and we have

F  Kn. Let m = l.c.m.(m1, . . . ,mn), ⇠m a primitive m-
th root of unity, E0 = K(⇠m), and Ei+1 = Ei( mi

p
ai ). By

Proposition 5.21, Eo/K0 is an Abelian extension, and by Pro-
postion 5.20, each Ei+1/Ei is a cyclic extension. Let L/K
be the normal closure of En/K. L is the join of all conjugates
of En over K, and by Lemma 5.22, L/K is a root extension,
with a radical tower

K  K(⇠m) = L0  · · ·  Lu = L

where each Lj+1 = Lj( mj
p
aj ) and all mj | m, for 0  j < u.

L/K is a Galois extension that contains all the roots of f(x),
hence F  L.

L0/K is an Abelian extension, and each Lj+1/Lj is a cyclic
extension. Let G = Gal(L/K) and Gj = Gal(L/Lj). We
have

G � G0 � G1 � · · · � Gu = 1,

and since Lj+1/Lj is Galois we get Gj+1 EGj and

Gj/Gj+1 = Gal(L/Lj)/Gal(L/Lj+1) ⇡ Gal(Lj+1/Lj)
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is Abelian. It follows that G is solvable. The splitting field F of f(x) over
K is contained in L, so

Gal(F/K) ⇡ Gal(L/K)/Gal(L/F )

is also solvable.

En

F = Kn

Ei

................

Ki

................
Ei�1

Ki�1

K1

.....
K(⇠m) = E0

................

K = K0

(() Assume now that Gal(F/K) is solvable, with

1 = Gn EGn�1 E · · ·EG1 EG0 = Gal(F/K)

and Gi�1/Gi cyclic of order mi. Let Ki = FGi , so

K = K0  K1  · · ·  Kn�1  Kn = F

Ki/Ki�1 is Galois with Gal(Ki/Ki�1) ⇡ Gi/Gi�1. Let m =
l.c.m.(m1, . . . ,mn), E0 = K(⇠m), Ei = E0Ki. Then we have
Ei/Ei�1 is Galois with Gal(Ei/Ei�1) isomorphic to a sub-
group of Gal(Ki/Ki�1), hence cyclic. Since E0 has enough
roots of unity, by Proposition 5.20 each Ei/Ei�1 is a radical
extension. Thus we have that E = En is a root extension of
K, that contains all the roots of f(x), so f(x) is solvable by
radicals.

Example 5.3.2 Let E be the splitting field of f(x) = x5�20x+6 2 Q[x].
We will try to determine the group G = Gal(E/Q). Note first that f(x) is
irreducible by Eisenstein’s criterion with p = 2. By separability, it has no
multiple roots. Let’s name the roots ↵1, . . . ,↵5. We can view G as a group
of permutations of the roots ↵1, . . . ,↵5, so that G  S5. By irreducibility
of f(x) it follows that that [Q(↵1) : Q] = 5 and [E : Q] is divisible by 5. By
Cauchy’s Theorem, G has an element of order 5. But the only elements in
S5 of order 5 are the 5-cycles, so G contains a 5-cycle. From the first and
second derivatives of f(x)

f 0(x) = 5x4 � 20
f 00(x) = 20x3
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we see that f 00(x) has a single real root, so by the Mean Value Theorem f 0(x)
has at most two real roots, and f(x) has at most three real roots. The table
of values

x �3 0 1 3
f(x) �177 6 �13 189

and the Intermediate Value Theorem, tell us that f(x) has three real roots.
Therefore of the five roots of f(x), three of them ↵1,↵2,↵3 are real, and the
other two are non-real, complex conjugate of each other ↵4 = ↵5. Complex
conjugation in C is a field automorphism, and its restriction to E yields
an automorphism of E that, as a permutation of the roots of f(x), is the
transposition (4 5). It follows from Exercise 5.3.5 below that Gal(E/Q) = S5,
and [E : Q] = 120. Since S5 is not solvable, it follows by Theorem 5.28 that
the polynomial f(x) = x5 � 20x+ 6 2 Q[x] is not solvable by radicals.

Exercise 5.3.5 Let p be prime, and G  Sp. Show that if G contains a
p-cycle and a transposition, the G = Sp.

We can now use Proposition 5.27, Example 5.3.2, and Theorem 5.28, to
prove the following Theorem, due to Abel [1] in 1824.

Theorem 5.29 [Abel] The general equation of degree n is not solvable by
radicals for any n � 5.

Proof. Since the Galois group of the polynomial f(x) = x5�20x+6 is S5, then
by Proposition 5.27, and Theorem 5.28, the roots of this polynomial cannot
be expressed by radicals. Hence there is no formula to solve the general
equation of degree 5 by radicals. For n > 5 the existence of a solution by
radicals of the general polynomial of degree n yields a solution by radicals of
the equation f(x) · xn�5 = 0, contradicting the above.


