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Abstract. We will study the concept of the fundamental group of a topologi-

cal space. In addition, we will also study covering spaces of a topological space

and its relation with the fundamental group. At the end we will highlight the
analogy between covering spaces and the Galois group which will be evident

from the theory we build on covering spaces.
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1. Introduction

While studying topology, the first question we ask is, whether two spaces are
“topologically” equivalent. If there exists a homeomorphism between two topo-
logical spaces, we can show that they have the same properties. However, finding
homeomorphisms or proving that a homeomorphism does not exist between two
spaces is a difficult task. For example, how do we prove that R2 and R2\(0, 0) are
not topologically the same? This is where the concept of “The Fundamental Group”
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comes in. Fundamental groups give an algebraic structure to topology. If two spaces
are topologically equivalent, then the spaces have isomorphic fundamental groups.

Suppose X is a topological space. A covering of X is a space X̃ with a continuous
map onto X, that satisfies a very strong condition. We will see the precise definition
in Section 4. As a first example, think of “wrapping” the real line around a circle.

The fundamental group of a space is closely related to its covering space. The
subgroups of the fundamental group of a topological space X can help us classify
all the covering spaces of X.

Recall that the fundamental theorem of Galois theory states that for each inter-
mediate subfield we have a corresponding subgroup of the Galois group. This is
analogous to the one to one correspondence between the subgroups of the funda-
mental group of the space X and its covering spaces in algebraic topology. We will
highlight this analogy at the end of exploring covering spaces and its relation with
the fundamental group.

The purpose of this paper is to report on our study of the topic of covering
spaces. This study was a part of the Apprenticeship program of the Department
of Mathematics, University of Chicago REU of 2017. We follow the exposition in
Massey[1]. This paper is organised as follows. In Section 2 we explain the concept
of fundamental groups. In Section 3 we review some group theoretic concepts before
explaining the idea of covering spaces. We conclude by discussing the analogy with
the Galois correspondence.

2. Fundamental groups

2.1. Homotopy. Let us begin with some of the basic definitions we will need to
study fundamental groups. At all times I denotes the unit interval [0, 1].

Definition 2.1 (Homotopy). A homotopy is a family of maps ft : X → Y, t ∈ I
such that the associated map F : X×I → Y given by F (x, t) = ft(x) is continuous.
Two maps f and g are homotopic if there exists a homotopy ft between them. We
write f ' g.

A homotopy from X to Y gives us a continuous way of deforming X into Y.

Definition 2.2 (Homotopy equivalence). Let f : X → Y be a continuous map. We
say that f is a homotopy equivalence if there exists a continuous map g : Y → X
such that f ◦ g is homotopic to the identity map of Y and g ◦ f is homotopic to the
identity map of X. In such a case we say that X and Y are homotopy equivalent.

A special case of homotopy is deformation retraction. Deformation retraction of a
space X onto a subspace A is a family of continuous maps ft : X → X, t ∈ [0, 1] such
that f0 is the identity map (we will denote I as the identity map) and f1(X) ⊂ A.
Also, ft|A = I.

Geometrically, think of it this way: We draw line segments from space X onto
the subspace A and then let X shrink into A along the line segments. For example,
S1 is a deformation retract of R2\(0, 0).

Remark 2.3. Let X be a topological space and A be a subspace of X. If A is a
deformation retract of X, then X is homotopy equivalent to A.

Definition 2.4 (Path homotopy). Let X be a topological space. Two paths f and
f ′ in X with the same initial point x0 and terminal point x1 are path homotopic if
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there is a continuous map F : I × I → X such that:

F (s, 0) = f(s) ;F (s, 1) = f ′(s) (2.5)

F (0, t) = x0 ;F (1, t) = x1, for all s, t ∈ I. (2.6)

Here F is a path homotopy between f and f ′. We write f 'p f ′. The relation
(2.5) says that F represents a continuous way of deforming f into f ′ and (2.6) says
that the end points of the paths stay fixed. Note that f is always (path) homotopic
to itself with F (s, t) = f(s) for all t.

Lemma 2.7. Homotopy and path homotopy are equivalence relations.

Proof. Reflexivity of the relation is clear. Let us look at how the relation is sym-
metric and transitive. Suppose f ' f ′ and F is the homotopy, then notice that
G(x, t) = F (x, 1− t) is the homotopy between f ′ and f. Thus the relation is sym-
metric as well.

Now, suppose f ' f ′ and f ′ ' f ′′. Let F be the homotopy between f and f ′

and F ′ be the homotopy between f ′ and f ′′. Define G : X × I → X as follows:

G(x, t) =

{
F (x, 2t) t ∈

[
0, 12
]

F ′(x, 2t− 1) t ∈
[
1
2 , 1
]

This is a well defined homotopy between f and f ′′. The motivation behind defining
the map this way was to first deform f into f ′ and then f ′ into f ′′ in half the
time. �

Note that any two paths f0 and f1 in Rn having the same end points x0 and
x1 are homotopic via the linear homotopy F (x, t) = ft(x) = (1− t)f0(x) + tf1(x).
During this homotopy each point of f0(x) travels along the line segment joining it
to f1(x).

2.2. Product of paths.

Definition 2.8. Given two paths f, g : I → X such that f(1) = g(0), we define
the product of f and g as follows:

f · g(s) =

{
f(2s) s ∈

[
0, 12
]

g(2s− 1) s ∈
[
1
2 , 1
]

From the definition it is clear that the product of two paths f and g simply
means that we traverse f first and then g in half the time. This product preserves
homotopy. Also note that if we restrict to paths with the same starting and terminal
point (say) x0, then we have a loop. We will refer to x0 as the base point.

Notation 2.9. The set of all homotopy classes [f ] of loops f : S1 → X is denoted
by π1(X,x0).

Remark 2.10. We can also consider closed paths from Sn → X and have higher
order homotopy classes. (The set is then denoted by πn(X,x0)). However, in this
paper we will only consider π1(X,x0). For simplicity, we drop the subscript.
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2.3. The Fundamental Group.

Proposition 2.11. π(X,x0) is a group with respect to [f ][g] = [f · g].

Note that since the product of paths preserves homotopy, the above is well
defined on homotopy classes. The result follows from the following lemmas we
prove to show that the group axioms hold for π(X,x0).

Lemma 2.12. The multiplication of equivalence classes of paths is associative.

Proof. Let f, g, h be paths such that terminal point of f is the initial point of g and
the terminal point of g is the initial point h. We need to show that:

(f · g) · h ' f · (g · h).

We will give a pictorial proof of the above lemma. Consider Figure 1. Here at
t = 0, we have (f · g) ·h and at t = 1, the interval is “deformed” into f · (g ·h) along
the two line segments. �

For any x ∈ X denote [εx], the equivalence class of the constant map from I into
the point x in X.

f g h

f g h

Figure 1

Lemma 2.13. Let [f ] be an equivalence class of paths with the initial point x and
the terminal point y. Then, [εx][f ] = [f ] and [f ][εy] = [f ].

As in the above proof, we can argue that εx · f ' f and f ' εy · f (see Figure 2).
Note that in case of a loop, the left identity is same as the right identity.
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ex f

f

f ey

f

Figure 2

Lemma 2.14. Let f be a path in X and let f̂ be the path f(1− t), t ∈ I, i.e., the

path f in the opposite direction. Let [f ] and [f̂ ] denote the equivalence classes of f

and f̂ respectively. Then, [f ][f̂ ] = [εx] and [f̂ ][f ] = [εy].

ex

f f̂

Figure 3

Proof. The diagram shows that f · f̂ ' ε where ε is the constant path at x ∈ X. �

From the above three lemmas, it is clear that π(X,x0) forms a group. We call
π(X,x0), “The Fundamental Group” of the space X.

Remark 2.15. The reader should note here that the product of paths is not asso-
ciative, but the product of equivalence classes, under the relation of homotopy, is
associative.

How does the fundamental group depend on the choice of the base point? The
following theorem tells us that we don’t have to worry about what base point to
choose while considering the fundamental group of a path connected space.
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Theorem 2.16. If X is path connected then the groups π(X,x) and π(Y, y) are
isomorphic for any points x, y ∈ X.

Proof. Let x, y ∈ X and let γ be a path class with initial point x and terminal
point y. Define a map u : π(X,x)→ π(X, y) such that α 7→ γ−1αγ. Note that:

u(αβ) = γ−1αβγ

= (γ−1αγ) · (γ−1βγ)

= u(α) · u(β)

Therefore, u is a homomorphism. Now define v as v : π(X, y)→ π(Y, x) such that
β 7→ γβγ−1. Notice that u ◦ v(α) = u(γαγ−1) = γ−1(γαγ−1)γ ' α. Thus u and v
are inverses of each other, and therefore isomorphisms. �

Definition 2.17 (Contractible to a point). A topological space X is contractible
to a point if there exists a point x0 such that {x0} is the deformation retract of X.

Therefore, intuitively, a contractible space can be shrunk to a point. It follows that
the fundamental group of a contractible space is trivial.

Definition 2.18. (Simply connected) A topological space X is simply connected
if it is path connected and π(X,x) = {1} for some (hence for all) x ∈ X.

We know that every path in Rn is homotopic to the constant path via the linear
homotopy. Therefore Rn is simply connected.

2.4. Effect of a continuous mapping on the Fundamental Group. Let φ :
X → Y be continuous. Suppose f0 and f1 are homotopic paths in X. Then so
are φ ◦ f0 and φ ◦ f1. Let φ∗(α) be the image of path class α in X. Note that if
f0, f1 ∈ [α], then φ ◦ f0, φ ◦ f1 ∈ φ∗(α). The map φ∗ has the following properties:

(1) φ∗(α · β) = φ∗(α) · φ∗(β).
(2) For any x ∈ X,φ∗(εx) = εφ(x).

(3) φ∗(α
−1) = (φ∗(α))−1.

(4) If ψ and φ are two continuous mappings then, (ψφ)∗ = ψ∗φ∗.
(5) If φ : X → X is the identity map then, φ∗(α) = α for any path α in X i.e.,

φ∗ is the identity homomorphism.

So φ induces a homomorphism φ∗ : π(X,x)→ π(Y, y). Notice that if φ : X → Y is a
homeomorphism, then the induced map φ∗ : π(X,x)→ π(Y, y) is an isomorphism.
Therefore if two topological spaces are homeomorphic, then they have isomorphic
fundamental groups. In fact, we have a much stronger result: If two spaces are
homotopy equivalent, then their fundamental groups are isomorphic.

2.5. Fundamental group of a circle. We will now see how the fundamental
group of a circle looks like. What are the closed paths in a circle? We can go
around the circle once (from some base point). Call this path α. We can traverse α
in the opposite direction to get α−1. Going around the circle twice is the path α2.
Similarly, going around the circle thrice is α3 and so on. These are all the closed
paths in a circle and we can therefore say that the fundamental group of a circle is
infinite cyclic. We give a rigorous proof of this statement below.

Theorem 2.19. The fundamental group of a circle π(S1, 1) ∼= Z.
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Proof. Let fn be a loop around 1 in S1 defined as follows: fn : I → S1 such
that fn(s) = e2πins. This map gives us a loop in S1 which goes around the circle
n times (from the base point 1). Notice that [fm][fn] = [fm+n]. This induces a
homomorphism φ : Z→ π(S1, 1) given by: φ(n) = [fn]. We will prove that the map
φ is an isomorphism.
Now, define p : R → S1 by p(s) = e2πis. This map wraps the interval [n, n + 1]

around the circle starting at 1 and going around anticlockwise. Let f̃n : I → R
be defined as follows: f̃n(s) = ns. Notice that fn = p ◦ f̃n. We therefore have the
following commutative diagram:

R

p

��
I

f̃n

??

fn

// S1

The idea now is to lift a path in S1 to a unique path in R using the fact that
S1 is locally homeomorphic to the real line. So we next claim the following: For
any path f : I → S1 such that f(0) = 1, there exists a unique path f̃ : I → R
such that f̃(0) = 0 and p ◦ f = f̃ . Let U be a small open neighborhood in S1.
Observe that each path component of f−1U in R is homeomorphic to U. Cover S1

with small neighborhoods say {Uα}. Then {f−1(Uα)} is a covering of I. We can
now divide the unit interval I into subintervals [0, t1], [t1, t2], . . . , [tn−1, 1] where
0 = t0 < t1 < · · · < tn−1 < tn = 1 such that for all 0 ≤ i ≤ n − 1, f [ti, ti+1] lies
in Uα for some α. To see this we need a simple concept of the “Lebesgue number.”
We will not prove its existence but only state it.

Lemma 2.20. For every open cover µ of a compact metric space X, there is a pos-
itive real number λ, called the Lebesgue number such that every subset of diameter
less than λ is contained in some subset of µ.

Let λ be the Lebesgue number of the covering {f−1(Uα)} of I. Divide the unit
interval into any subintervals of length less that λ. It follows from the definition of
the Lebesgue number that f carries each subinterval to one of the open intervals
of S1. Since the above holds, we have a unique lift of f in R for each subinterval
[ti, ti+1]. This lifting of each subinterval is determined by the lifting of its initial
point.
Next, define a function ψ : π(S1, 1) → Z by ψ([f ]) = f̃(1), the endpoint of the

lifted path. Note that f̃(1) is an integer since f(1) = p(f̃(1)) = 1. To show that the
map is well defined, we must show that it is independent of the choice of the path
in [f ]. Suppose H is a homotopy between two maps f and g in [f ]. We must show

that their respective lifting maps f̃ and g̃ are homotopic via some homotopy, say
H̃ such that H = pH̃. We use a similar Lebesgue number argument for the interval
I × I to construct H̃. Let H : I × I → S1 such that:

H(s, 0) = f(s)

H(s, 1) = g(s)

H(0, t) = f(0) = g(0) = 1

H(1, t) = f(1) = g(1) = 1
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We can divide I × I into sub-squares such that H maps each small rectangle into
some small neighborhood in S1. Proceed sub-square by sub-square to construct H̃.
Note that H maps a small rectangle into a small neighborhood of S1. Since the path
components of p−1(U) are homeomorphic to U, we can construct H̃ uniquely. Note

that since the lifted path is unique, H̃(s, 0) = f̃(s) and H̃(s, 1) = g̃(s). We know

that ψ([fn]) = f̃n(1) = n. Therefore the map ψ ◦ φ : Z → Z is the identity map.
Thus, ψ is surjective and φ is injective. It remains to show that ψ is injective which
would imply φ is onto. Suppose that ψ([f ]) = ψ([g]). This implies that f̃(1) = g̃(1).

Thus, f̃ · g̃−1 is a loop in R around 0. Recall that the fundamental group of the
real line is trivial. So [f̃ · g̃−1] = [c0] where c0 is the constant path at 0 in R. This

further implies that p∗([f̃ · g̃−1]) = [f ][g−1] = [c1]. Thus, [f ] = [g]. We therefore
conclude that φ : Z→ π(S1, 1) is an isomorphism.

�

We can now answer the first question we asked at the beginning of the paper. We
know that Rn\(0, 0) is homotopy equivalent to S1. Since the fundamental group of
Rn is trivial, while that of S1 is Z, they are not homotopy equivalent as topological
spaces.

3. Recap of some group theoretic concepts

This section will include a quick recap of group actions and propositions related to
it. We will state them without the proof.

Definition 3.1. (Group action) Suppose G is a group and X is a non empty set.
We say that G is acting on X if there is a map φ : G×X → X, where (g, x) 7→ g ·x,
such that the following hold:

(1) e · x = x for all x ∈ X, where e is the identity element of G.
(2) (g1g2) · x = g1(g2 · x)

We say that G acts on X (from the left). We will refer to X as the (left) G space.
Note that every element of g acts on x to give us a new element x′ ∈ X. So, a group
action induces a map G→ Γ(X), the set of bijections of X.

Definition 3.2 (Isotropy subgroup). Suppose G is acting on X. The stabilizer or
the isotropy subgroup of an element x ∈ X is the set {g ∈ G : g ·x = x}. We denote
this set by Gx.

Note that we have an equivalence relation on X, x ∼ x′ if and only if there exists
an element g ∈ G such that x′ = g · x. The equivalence class of x = {x′|x′ = g · x}.
This is called the orbit of x and we denote it by G · x. Thus X can be written as
a disjoint union of all the orbits of its elements.

Proposition 3.3. Suppose G is a group acting on the set X. Then G ·xi ∼= G/Gxi

for all xi ∈ X.

Remark 3.4. We say that a group acts freely on X if it acts without any fixed
points, i.e., the set Gx is trivial for any x ∈ X.

The action of G is called transitive if there is only one orbit of X, i.e., for all
x ∈ X,G · x = X. If G acts on X transitively, then we call X a homogeneous G
space.
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Proposition 3.5. A group A of automorphisms of a (left) homogeneous G space
is the entire group of automorphisms if and only if for any two points x and y ∈ X
which have the same isotropy subgroup, there exists an automorphism φ ∈ A such
that φ(x) = y.

Recall that the normalizer of a subgroup H of G is the set:

N(H) = {g ∈ G|gHg−1 = H}.

We denote the group of all automorphisms of X as Aut(X).

Proposition 3.6. Let X be a homogeneous G space and H be the isotropy subgroup
of some x ∈ X. Then the group Aut(X) ∼= N(H)/H.

See [1, p. 257] for the proofs of the above propositions. Keeping the above propo-
sitions in mind, we can now move on to the concept of covering spaces.

4. Covering spaces

4.1. Definition and Examples.

Definition 4.1. Let X be a topological space. A covering of X is a space X̃
together with a continuous map p : X̃ → X such that the following holds: Each
point x ∈ X has a path connected, open neighborhood U , such that each path
component of p−1(U) is mapped homeomorphically in U by p.

We will refer to U as an elementary neighborhood of any point x ∈ U . Let us see
some examples of covering spaces.

Example 4.2. If X is a topological space and i : X → X is the identity map, then
X is trivially a covering of itself.

Example 4.3. Let X = S1. Then we have a map p : R→ S1 defined by:

p(t) = (cos t, sin t).

This map “wraps” the real line around the circle. So (R, p) is a covering space of
S1 (see Figure 4).

In the theorems that follow, it will always be useful to have this example in mind
to understand things.

Example 4.4. We can have a map from a circle which maps around itself n times.
If we have polar coordinates (r, θ), then for the unit circle consider the following
map:

pn(1, θ) = (1, nθ).

This is a covering map for the circle as well.

Example 4.5. A torus can be covered by the plane R2 or a cylinder. This can
be proved using the fact that, if (X̃, p) is a covering of X and (Ỹ , q) is a covering

of the space Y , then (X̃ × Ỹ , p × q) is a covering of X × Y , where the map p × q
is defined as: (p × q)(x, y) = (px, qy). We can therefore construct a covering of a
torus. A torus is essentially the space S1×S1. So the plane R×R and the cylinder
(R × S1) is a covering of the torus, with the product of the maps defined in the
previous examples.
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Figure 4

4.2. Lifting of paths to a covering space of a topological space. We pre-
viously saw that a continuous map between two spaces X and Y induces a homo-
morphism between their fundamental groups. Given any two homotopic paths in
X, their continuous images are homotopic in Y. Now we ask whether the converse
is true. Given any two homotopic paths in Y, are their pre-images homotopic? It
turns out this is true for covering maps.

Lemma 4.6. Let (X̃, p) be a covering of the space X, let x0 ∈ x and x̃0 ∈ X̃ such
that p(x̃0) = x0. Then for any path f : I → X in X with initial point x0, there

exists a unique path g : I → X̃ in X̃ with initial point x̃0 such that pg = f.

Proof. Let U be any elementary neighborhood and f ⊂ U. Let V be the path
component of p−1(U) which contains x̃0. Since p maps V homeomorphically into U,
there exists a unique path g in V with the initial point as x0 such that pg = f. Now
assume f is not wholly contained in U. In this case, the idea is to express f as a
product of shorter paths each of which is contained in an elementary neighborhood.
We can then apply the above argument. Let {Ui} be a covering of X by elementary
neighborhoods. Then, {f−1(Ui)} is an open covering of I. Let λ be the Lebesgue
number of the covering. Now, choose n such that 1

n < λ. Divide the interval I

into the closed subintervals
[
0, 1

n

]
,
[
1
n ,

2
n

]
, . . . ,

[
n−1
n , 1

]
. Since, the diameter of these

intervals is less than λ, f maps each of these intervals inside Ui. We can now define
g over these subintervals successively using the argument we did above. �

The uniqueness of the path comes from the following lemma:

Lemma 4.7. Let (X̃, p) be a covering of X. Given any two maps f0, f1 : I → X̃
such that pf0 = pf1, the set {y ∈ I|f0(y) = f1(y)} is either empty or all of I.

Proof. Recall that in a connected space, the set which is both open and closed is
either the empty set φ or the whole space. We will prove that the set A = {y ∈
I|f0(y) = f1(y)} is both open and closed. First we will see that it is closed. Let y be
a point of the closure of this set and let x = pf0(y) = pf1(y). Assume f0(y) 6= f1(y).
We will see that this leads to a contradiction. Let U be an elementary neighborhood
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of x and V0 and V1 be the components of p−1(U) which contain f0(y) and f1(y)
respectively. Since f0 and f1 are both continuous, we can find a neighborhood W
of y such that f0(W ) ⊂ V0 and f1(W ) ⊂ V1. Note that V0 ∩ V1 = φ. This is a
contradiction to the fact that every neighborhood of y must intersect the set A.
Thus A contains all its closure points and is therefore closed. Analogously we can
argue that every point in A is an interior point and therefore the set is open. Since
f0 and f1 agree on at least one point in I, i.e., f0(0) = f1(0) = x̃0, they have to be
the same everywhere. �

Lemma 4.8. Let (X̃, p) be a covering space of X. Let g0, g1 : I → X̃ be paths in

X̃ which have the same initial point. If pg0 ' pg1, then g0 ' g1. In particular g0
and g1 have the same terminal point.

Proof. Let x̃0 be the initial point of g1 and g1. Since, pg0 ∼ pg1, there exists a map
F : I × I → X such that:

F (s, 0) = pg0(s)

F (s, 1) = pg1(s)

F (0, t) = pg0(0) = p(x̃0)

F (1, t) = pg0(1)

By using a Lebesgue number argument again, we can find the partition 0 = s0 <
s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 such that F maps each small
rectangle [si−1×si]× [tj−1× tj ] into some elementary neighborhood in X. We have
to prove that g0 ∼ g1. We will prove this by showing that there exists a unique map
G : I×I → X̃ such that pG = F and G(0, 0) = x̃0. First we define G over the small
rectangle [s1, 0] × [0, t1]. Note that F maps this small rectangle to an elementary
neighborhood of p(x̃0) say U. Since components of p−1(U) are homeomorphically
mapped by p into U, we can construct G as in Lemma 4.6. Now, we can extend this
successively to other rectangles. Uniqueness of G comes from Lemma 4.7. Note
that G(s, 0) = g0(s) and G(s, 1) = g1(s). This follows from the uniqueness assertion
of Lemma 4.6. Also, G(0, 0) = g0(0) = g1(0) = x̃0. �

The consequence of these lemmas is a very important result:

Theorem 4.9. Let (X̃, p) be a covering space of X, x̃0 ∈ X̃ and x0 = p(x̃0). Then

the induced homomorphism p∗ : π(X̃, x̃0)→ π(X,x0) is injective.

Proof. Let p : X̃ → X be the covering map, then, p∗ : π(X̃, x̃0) → π(X,x0) is

the induced homomorphism. Let [α] and [β] be two path classes in X̃. Suppose gα
and gβ are paths in [α] and [β] respectively. Let p∗[α] = p∗[β]. This implies that

pgα ' pgβ . It follows from Lemma 4.8 that gα ' gβ in X̃. So, [α] = [β]. Thus the
map is injective. �

Now, suppose x̃0 and x̃1 are points in X̃ such that p(x̃0) = p(x̃1) = x0. How are

the images of p∗ : π(X̃, x̃0)→ π(X,x0) and p∗ : π(X̃, x̃1)→ π(X,x0) related?

To answer this, we choose a class γ of paths in X̃ starting from x̃0 and ending at x̃1.
This defines an isomorphism φ : π(X̃, x̃0) → π(X̃, x̃1) given by : φ(α) = γ−1αγ.
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We thus have the following commutative diagram:

π(X̃, x̃0)
p∗ //

φ

��

π(X,x0)

ψ

��
π(X̃, x̃1)

p∗
// π(X,x0)

Here, ψ(β) = (p∗γ)−1β(p∗γ). Notice that p(x̃0) = p(x̃1) = x0, which is the ini-
tial and the terminal point of p∗γ. Therefore p∗γ is a closed path and belongs
to π(X,x0). So we conclude that images of π(X̃, x̃0) and π(X̃, x̃1) are conjugate
subgroups of π(X,x0).
Next question we ask is the following: Can every subgroup in a conjugacy class of
p∗π(X̃, x̃0) be obtained as the image of p∗π(X̃, x̃1) for some choice of x̃1? It turns
out that the answer is yes! We have the following theorem:

Theorem 4.10. Let (X̃, p) be a covering space of X and let x0 ∈ X. Then the

subgroups p∗π(X̃, x̃) for x̃ ∈ p−1(x0) are exactly a conjugacy class of subgroups of
π(X,x0).

Proof. Any subgroup in the conjugacy class of p∗(X̃, x̃0) looks like α−1[p∗(X̃, x̃0)]α,
for some α ∈ π(X,x0). Choose a closed path f : I → X representing α. By

Lemma 4.7, we have a path g : I → X̃ covering f with initial point x̃0, such that
p∗g = f . Let x̃1 be the terminal point of the lifted path. Then p∗π(X̃, x̃1) =

α−1[p∗(X̃, x̃0)]α. �

4.3. Lifting of arbitrary maps to a covering space. Previously, we had a path
from the unit interval I in X and we lifted it to a path in the covering space X̃. We
now generalize this and study the lifting of paths of X from an arbitrary connected
space Y. We introduce some notation first. If X and Y are topological spaces such
that x ∈ X and y ∈ Y, then, f : (X,x)→ (Y, y) means that f is a continuous map
from X to Y such that f(x) = y.

Let (X̃, p) be a covering space of X and x̃0 ∈ X̃ such that x0 = p(x̃0). Let y0 ∈ Y
and φ : (Y, y0)→ (X,x0) be a continuous map. We want to find the condition under

which there exists a map φ : (Y, y0) → (X̃, x̃0) such that the following diagram is
commutative:

(X̃, x̃0)

p

��
(Y, y0)

φ
::

φ
// (X,x0)

If φ exists, then we say φ can be lifted to X̃. We call φ to be a lifting of φ.
Note that if φ exists then we have the following commutative diagram of group
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homomorphisms:

π(X̃, x̃0)

p∗

��

π(Y, y0)

φ∗

99

φ∗ %%
π(X,x0)

Since p∗ is 1 − 1, for the diagram to be commutative we need Im(φ∗) ⊂ Im(p∗).
This condition is also sufficient and we have the following theorem:

Theorem 4.11. Let (X̃, p) be a covering of X,Y be a connected and locally

path connected space, and y0 ∈ Y, x̃0 ∈ X̃ such that x0 = p(x̃0). Given a map

φ : (Y, y0) → (X,x0), there exists a lifting φ : (Y, y0) → (X̃, x̃0) if and only if

φ∗π(Y, y0) ⊂ p∗π(X̃, x̃0).

Proof. We argued above that condition is necessary. Now we will show that the
condition is sufficient for the diagram to be commutative. In order to do so, we
will define φ. Assume φ exists. Let y be any point in Y. Since Y is path connected,
choose a path f : I → Y with initial point y0 and terminal point y. Consider the
paths φf and φf in X and X̃ respectively. φf is a lifting of φf and φ(y) is the

terminal point of the path φf. Define φ : (Y, y0) → (X̃, x̃) as follows: Given any
point y ∈ Y, choose a path f : I → Y with the initial point y0 and the terminal
point y. Then, φf is a path in X. By Lemma 4.6, there exists a path g : I → X̃
such that the initial point is x̃0 and pg = φf. Now, define φ(y) to be the terminal
point of g. We will now justify this definition by showing that φ(y) is independent
of the choice of the path f. By Lemma 4.8, we can change f by an equivalent path
without changing the definition of φ(y). So φ(y) only depends on the equivalent
classes of paths in Y. Suppose α and β are two different equivalent classes of paths
in Y from y0 to y. Then, αβ−1 is a closed path based at y0; hence, αβ−1 ∈ π(Y, y0).

This implies, φ∗(αβ
−1) ∈ p∗π(X̃, x̃) (using the hypothesis of the theorem). This

further implies that if (φ∗α)(φ∗β)−1 is lifted to a path in X̃ starting at x̃0, the

result is a closed path in X̃. Thus if φ∗α and φ∗β are each lifted to paths in X̃
starting at x̃0, they will have the same terminal point.
It is now left to prove that φ is continuous. Let y ∈ Y and U be an arbitrary
neighborhood of φ(y). We need to show that there exists a neighborhood V of y
such that φ(V ) ⊂ U. Choose an arbitrary neighborhood U ′ of pφ(y) = φ(y) such
that U ′ ⊂ p(U). Let W be the path component of p−1(U ′) which contains φ(y).
Now let U ′′ be an elementary neighborhood of φ(y) such that U ′′ ⊂ p(U ∩ W ).
Notice that the path component of p−1(U ′′) which contains φ(y) is a subset of U.
Since φ is continuous we can choose V such that φ(V ) ⊂ U ′′, so that φ(V ) ⊂ U.

(X̃, x̃0)

p

��
I

f // (Y, y0)

φ
::

φ
// (X,x0)

�
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4.4. Homomorphism between covering spaces. How are two covering spaces
of a topological space related? Can we define a map between two covering spaces
to identify them up to isomorphism?

Definition 4.12. Let (X̃, p1) and (X̃, p2) be covering spaces of X. A homomor-

phism of (X̃1, p1) into (X̃2, p2) is a continuous map φ : X̃1 → X̃2 such that the
following diagram is commutative:

X̃1
φ //

p1   

X̃2

p2~~
X

Definition 4.13. A homomorphism φ of (X̃1, p1) into (X̃2, p2) is called an isomor-

phism if there exists a homomorphism ψ of (X̃2, p2) into (X̃1, p1) such that φψ and
ψφ are identity maps.

An automorphism is an isomorphism of a covering space to itself. Set of all auto-
morphisms of X̃ form a group under composition.

Lemma 4.14. Let φ0 and φ1 be homomorphisms of (X̃1, p1) into (X̃2, p2). If there

exists any point x ∈ X̃1 such that φ0(x) = φ1(x), then φ0 = φ1.

Proof. This follows from Lemma 4.7 �

So if φ has a fixed point then it follows from the above lemma that φ is the identity
map.

Corollary 4.15. If φ ∈ A(X̃, p) and φ 6= I, then φ has no fixed points.

Next we will see a special case of Theorem 4.11.

Lemma 4.16. Let (X̃1, p1) and (X̃2, p2) be covering spaces of X and let x̃i ∈ X̃i for

i = 1, 2. such that p1(x̃1) = p2(x̃2). Then there exists a homomorphism φ of (X̃1, p1)

into (X̃2, p2) such that φ(x̃1) = x̃2 if and only if p1∗π(X̃1, x̃1) ⊂ p2∗π(X̃2, x̃2).

Proof. The proof follows by applying Theorem 4.11 to the following diagram.

π(X̃2, x̃2)

p2∗

��

π(X̃1, x̃1)

φ
88

p1∗ &&
π(X,x0)

�

The following two corollaries now are a direct consequence of Lemma 4.16.

Corollary 4.17. Under the conditions of the above lemma, there exists an iso-
morphism φ of (X̃1, p1) onto (X̃2, p2) such that φ(x̃1) = φ(x̃2) if and only if

p1∗π(X̃1, x̃1) = p2∗π(X̃2, x̃2).
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Corollary 4.18. Let (X̃, p) be a covering space of X and x̃1, x̃2 ∈ p−1(x0) where

x0 ∈ X. There exists an automorphism φ ∈ A(X̃, p) such that φ(x̃1) = x̃2 if and

only if p∗π(X̃, x̃1) = p∗π(X̃, x̃2).

Theorem 4.19. Two covering spaces (X̃1, p1) and (X̃2, p2) of X are isomorphic if

and only if for any two points x̃1 ∈ X̃1 and x̃2 ∈ X̃2 such that p1(x̃1) = p2(x̃2) = x0,

the subgroups p1∗π(X̃1, x̃1) and p2∗π(X̃2, x̃2) belong to the same conjugacy class.

Proof. From Corollary 4.17, we know that two covering spaces (X̃1, p1) and (X̃2, p2)

are isomorphic if and only if p∗π(X̃, x̃1) = p∗π(X̃, x̃2). By Theorem 4.10, they
belong to the same conjugacy class of subgroup of π(X,x0). �

Therefore, conjugacy class of subgroups completely determine the covering spaces
up to isomorphism. Now, what does it mean to have a homomorphism between two
covering spaces? Does one of them act as a covering space for the other as well?

Lemma 4.20. Let (X̃1, p1) and (X̃2, p2) be covering spaces of X and φ be a homo-

morphism of the first covering space into the second. Then (X̃1, φ) is a covering of

X̃2.

Proof. Observe that any point x ∈ X has an open neighborhood U which is the
elementary neighborhood of both the covering spaces. We can obtain such a neigh-
borhood of x by choosing elementary neighborhoods U1 and U2 of x for the coverings
(X̃1, p1) and (X̃2, p2) respectively, and then take U = U1 ∩ U2. Next we prove that

φ maps X̃1 onto X̃2. Let y be any point of X̃2. We need to show that there exists a
point x of X̃1 such that φ(x) = y. Choose a base point x1 ∈ X̃1 and let x2 = φ(x1),

x0 = p1(x1) = p2(x2). Choose a path f in X̃2 with initial point x2 and terminal
point y. Let g = p2f be its image in X. By Lemma 4.6, there exists a unique path
h in X̃1 with initial point x1 such that p1h = g. Let x be the terminal point of h.
Notice that φh and f both have the same initial point and p2φh = g = p2f. So by
the uniqueness assertion in Lemma 4.6, φh = f. Thus, φ(x) = y. �

Let (X̃, p) be a covering space which is simply connected. If (X̃ ′, p′) is any other

covering space of X, then there exists a homomorphism φ of (X̃, p) ↪→ (X̃ ′, p′) since

p∗π(X̃, p) = {1} ⊂ p∗π(X̃ ′, p′). Thus (X̃, p) is a covering for all the other covering
spaces. We will call it the universal cover.
If we have two universal coverings of a space, say (X1, p1) and (X2, p2) then their
fundamental groups are trivial. Thus, p∗π(X1, p1) = p∗π(X2, p2) = p∗{1}. By
Corollary 4.17, they are isomorphic.

Proposition 4.21. Consider the following commutative diagram of spaces and
continuous maps. Assume (X, p) is a covering of Y and (X, q) is a covering of Z.
Then (Y, r) is a covering of Z.

X
p

  
q

��

Y

r
~~

Z
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Proof. Let z ∈ Z. Since the diagram is commutative, we have that q−1(z) =
p−1r−1(z). Now, Let U be an elementary neighborhood of z and V be an elemen-
tary neighborhood of r−1(z). We know that the intersection q−1(U) and p−1r−1(V )
is non empty. Note that each path component of this intersection maps homeomor-
phically to an open set in U and V (say U1 and V1 respectively). This gives us a
homeomorphism between U1 and V1. Thus U1 acts as an elementary neighborhood
for the space Y and thus, Y is a covering space of Z. �

4.5. Action of the group π(X,x) on the set p−1(x) for any x ∈ X.

Definition 4.22. Let (X̃, p) be a covering space of X. For any point x̃ ∈ p−1(x)

and any α ∈ π(X,x), define x̃ ·α ∈ p−1(x) as follows: Let α̃ be the lifting of α in X̃
with the initial point x̃ such that p∗(α̃) = α. Define x̃ ·α to be the terminal point of
the path class α̃. We can see in Figure 5 that the closed path α which goes around
the circle once, acts on x̃1 such that α · x̃1 = x̃2.

Figure 5

It follows from the definition that:

(1) x̃ · 1 = x̃
(2) (x̃ · α) · β = x̃ · (αβ)

Therefore, this defines a right group action of π(X,x) on the set p−1(x). Now, let

x̃0 and x̃1 ∈ p−1(x). Since X̃ is path connected, there exists a path class α̃ in X̃
with the initial point x̃0 and terminal point x̃1. Let α = p∗(α̃). Note that α is the
equivalence class of closed paths and x̃0 · α = x̃1. We just proved that the group
π(X,x) acts transitively on the set p−1(x).

Proposition 4.23. The isotropy subgroup corresponding to any x̃ ∈ p−1(x) is the

subgroup p∗π(X̃, x̃) of π(X,x).

Proof. Note that the isotropy subgroup of any x̃ = {α|α · x̃ = x̃, α ∈ π(X,x)}. This
is exactly p∗π(X, x̃). �

Proposition 4.24. As a right π(X,x)-space, p−1(x) ∼= π(X,x)/p∗π(X̃, x̃).

Proof. This follows from Proposition 3.3. �
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4.6. Action of Aut(X̃, p) on p−1(x) as a right π(X,x) space.

Proposition 4.25. For any automorphism φ ∈ A(X̃, p), any point x̃ ∈ p−1(x),
and any α ∈ π(X,x), φ(x̃ · α) = φ(x̃) · α.

The above proposition tells us that the automorphism group acts on p−1(x) as a
right π(X,x)-space i.e., the action of the automorphism group commutes with the
action of π(X,x).

Proof. Lift α to a path α̃ in X̃ with initial point x̃, such that p∗(α̃) = α. Note that

x̃ ·α is the terminal point of α. Now consider the path φ∗(α) in X̃. Its initial point
is φ(x̃) and the terminal point is φ(x̃ · α). Observe that:

p∗(φ∗(α̃)) = (pφ)∗(α̃) = p∗(α̃) = α.

This implies that φ∗(α̃) is also a lifting of α. By definition, (φx̃) · α is the terminal
point φ∗(α̃). Therefore, (φx̃) · α = φ(x̃ · α). �

Theorem 4.26. Let (X̃, p) be a covering space of X. Then the group of automor-

phisms, A(X̃, p) is naturally isomorphic to the group of automorphisms of the set
p−1(x) considered as a right π(X,x) space.

Proof. Note that if φ is an automorphism of X̃, then φ|p−1(x) is an automorphism

of p−1(x). First we will prove that the map : φ 7→ φ|p−1(x) is one to one. Suppose
φ|p−1(x) = ψ|p−1(x). This implies, φψ−1|p−1(x) = I. Since φ and ψ do not have any

fixed points, it follows that φψ−1 = I. Thus φ = ψ. We next need to prove that the
map is onto. Suppose φ is an automorphism of p−1(x) such that φ · x̃1 = x̃2 where

x̃1, x̃2 ∈ p−1(x). Then p∗π(X̃, x̃1) = p∗π(X̃, x̃2). From Corollary 4.18, it follows that

there exists an automorphism ψ ∈ Aut(X̃, p) such that ψ(x̃1) = x̃2. We conclude

that the group Aut(X̃, p) of automorphisms is an entire group of automorphisms
by Proposition 3.5. Therefore, the map is onto. �

Corollary 4.27. For any point x ∈ X and any x̃ ∈ p−1(x), the automorphism

group A(X̃, p) is isomorphic to the quotient group N(p∗π(X̃, x̃))/p∗π(X̃, x̃).

Proof. This is a direct consequence of Proposition 3.6 and Theorem 4.26. �

Definition 4.28 (Regular covering space). A class of covering spaces for which

p∗π(X̃, x) is a normal subgroup of π(X,x) is called a regular covering space.

Corollary 4.29. If (X̃, p) is a regular covering space of X, then A(X̃, p) ∼=
π(X,x)/p∗π(X̃, x̃).

Proof. Since p∗π(X̃, x̃) is normal, its normalizer is the whole group π(X,x). The
above corollary now follows from Corollary 4.27. �

Notice that for a universal covering space, p∗(X̃, x) = {1}. Thus A(X̃, p) ∼= π(X, p).

4.7. Regular covering spaces and quotient spaces. Let (X̃, p) be a covering
space of X. Since p is an open map, X has quotient topology induced by p. We
identify the points in p−1(x) to a single base point such that X̃/A(X̃, p) = X.

However Aut(X̃, p) has to act transitively on p−1(x) in order for X to be a quotient

space of X̃. This is not always true.
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Lemma 4.30. The automorphism group A(X̃, p) operates transitively on p−1(x) if

and only if (X̃, p) is a regular covering of X.

Proof. Recall that the subgroups p∗π(X̃, x̃) for x̃ ∈ p−1(x0) are exactly a conju-

gacy class of π(X,x0). Since X̃ is a regular covering, if x̃1 and x̃2 ∈ p−1(x), then

p∗π(X̃, x̃1) = p∗π(X̃, x̃2). From Corollary 4.18, there exists an φ ∈ Aut(X̃, p) such
that φ(x̃1) = x̃2. This proves that the action is transitive. �

Now, the next question we answer is, when does a group action on a topological
space X give rise to a covering map? In order to answer this, we introduce what
are called properly discontinuous group actions.

Definition 4.31. A group of homomorphisms G of X̃ is said to be properly dis-
continuous if every point x̃ ∈ X̃ has a neighborhood U such that the sets φ(U) are
pairwise disjoint for all φ ∈ G.

Proposition 4.32. Let Y be connected, locally path wise connected, topological
space and let G be a properly discontinuous group of homomorphisms of Y. Let
p : Y → Y/G denote the natural projection of Y onto its quotient space. Then,
(Y, p) is a regular covering space of Y/G, and G = A(Y, p).

Proof. Let x ∈ Y/G. We must show that x has an elementary neighborhood.
Choose a y ∈ Y such that p(y) = x. Since G is properly discontinuous, there exists
a neighborhood N of y such that the sets φ(N), φ ∈ G, are pairwise disjoint. Since
Y is locally path connected, there exists an open neighborhood V of y such that
V ⊂ N. Let U = p(V ). We claim that U is an elementary neighborhood of x. Note
that since p is a open map, U is open and path connected. Also, p is an injection
from V onto U . This is because, if u, v ∈ V such that p(u) = p(v), then the orbit
of u is same as the orbit of v. So φ(u) = (v) for some φ ∈ G. Since u, φ(u) ∈ V and
φ acts discontinuously, φ is the identity homomorphism. Therefore, u = v. Thus
the map p from V to U is a homeomorphism. If W is any component of p−1(U)
different from V, then there exists φ ∈ G such that φ(V ) = W. Since, φ is a home-
omorphism of V onto W and p = pφ, it follows that W maps homeomorphically
into U. Thus U is an elementary neighborhood and Y is a covering of Y/G.
Now, notice that the G action on Y gives us an automorphism of (Y, p). So, G ⊂
Aut(Y, p). Suppose x1 and x2 are two points in Y. Let φ be an element of G such that
φ(x1) = x2. We can choose an automorphism ψ ∈ Aut(Y, p) such that ψ(x1) = x2.
It follows that φ = ψ. Thus Aut(Y, p) ⊂ G and thus G = Aut(Y, p) By construction,
G acts transitively on Y. Therefore by Lemma 4.30, (Y, p) is regular. �

Let us see an example to illustrate the above proposition. Let Y = R and for each
integer n define φn : R → R by : φn(x) = x + n. Let G = {φn|n ∈ Z}. G is a
properly discontinuous group of homomorphisms of R, since for any x ∈ R, if we
let U = (x − 1

2 , x + 1
2 ), the neighborhoods φn(U) are pairwise disjoint. Hence by

the above proposition R is a regular covering space of R/G. Recall that R/G ' S1.
Once again we proved that the universal covering of a circle is R.

4.8. One to one correspondence between the subgroups of π(X,x) and the

covering spaces of X. We have previously proved that a covering space (X̃, p) is

determined up to isomorphism by the conjugacy class of the subgroup p∗π(X̃, x̃) of
π(X,x). Now we answer the inverse question: Suppose X is a topological space and
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we are given a conjugacy class of subgroups of π(X,x), does there exist a covering

(X̃, p) of X such that p∗π(X̃, x̃) belongs to that conjugacy class?

Lemma 4.33. Let X be a topological space which has a universal covering space.
Then for any conjugacy class of subgroups of π(X,x), there exists a covering of

space (X̃, p) of X such that p∗π(X̃, x̃) belongs to the given conjugacy class.

Proof. Let (Y, q) be a universal covering space of X. We know that π(X,x) operates
transitively and freely on the set q−1(x). We also have that A(Y, q) ∼= π(X) and
Aut(Y, q) operates transitively on the left of the set q−1(x). Choose a subgroup G
of π(X,x) which belongs to the given conjugacy class. Let H be the subgroup of
A(Y, q) defined as follows: φ ∈ H if and only if there exists an element α ∈ G such
that φ(y) = y · α for some y ∈ q−1(x). Note that G ∼= H under the correspondence
φ 7→ α if and only if φ(y) = y · α. Since H is a subgroup of A(Y, q), it is a properly

discontinuous group of homomorphisms of Y. Let X̃ = Y/H, and r : Y → X̃ be the

natural projection and p : X̃ → X induced by q. We have the following commutative
diagram:

Y
r

$$
q

��

Y/H = X̃

p
zz

X

Notice that (Y, q) is a covering space of Y/H by Proposition 4.32. It follows from

Proposition 4.21 that (X̃, p) is a covering space of X. Thus the group π(X,x)
operates transitively on the right of the set p−1(x). Let x̃ = r(y) ∈ p−1(x). Since
Y is the universal cover, π(Y/H) ∼= Aut(Y, r), which is equal to H by Proposition
4.32. This gives a map between Aut(Y, r) ∼= H in Aut(Y, q) to G in π(X). So, p∗
maps π(Y/H) to G in π(X). �

In the above theorem we assumed that the space has a universal covering. However,
what if X has no universal covering? We now introduce what is called “semi-locally
simply connectedness”. We will see that this property is necessary and sufficient
for the existence of a universal covering.
Let (X̃, p) be a universal covering space of X. Suppose x ∈ X and x̃ ∈ p−1(x).
Let U be an elementary neighborhood of x and V be the component of p−1(U)
which contains the point x̃. Notice that we have the following commutative diagram
involving the fundamental groups:

π(V, x̃) //

p∗|V
��

π(X̃, x̃)

p∗

��
π(U, x)

i∗
// π(X,x)

Since p|V is a homeomorphism of V onto U, p∗|V is an isomorphism. We also have

that π(X̃, x̃) = {1}. From the commutativity of the diagram, we can say that i∗ is
trivial. Therefore, the space X has the following property: Every point x ∈ X has
a neighborhood U such that the homomorphism π(U, x)→ π(X,x) is trivial.
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Definition 4.34. Let X be a topological space, X is called semi-locally simply
connected if every x ∈ X has a neighborhood U such that the homomorphism
π(U, x)→ π(X,x) is trivial.

The argument above tells us the necessity of the property for the existence of the
universal cover. We will now show that this property is also sufficient.

Theorem 4.35. Let X be a topological space which is connected, locally path-wise
connected and semi locally simply connected. Then given any conjugacy class of
subgroups of π(X,x), there exists a covering space (X̃, p) of X corresponding to the
given conjugacy class.

It suffices to prove here that X has a universal covering. We will only give an
idea of the proof on how an early topologist might have constructed the universal
covering. Let us make some observations first. Assume for now, that X has a
universal covering space (X̃, p). Choose a base point x̃0 ∈ X̃ and let x0 = p(x̃0).

Given any point y ∈ X̃, there exists a unique path class α with the initial point x̃0
and the terminal point y. Thus we can associate a point y to the path class p∗(α)
in X. We use this observation to give an idea for the construction of a universal
covering. Choose a base point x0 ∈ X, and let X̃ be the set of all path classes
which have x0 as their initial point. We define a map p : X̃ → X such that p(α) is

the terminal point of α in X. We can now define some topology on X̃ so that it is
simply connected and it becomes a covering of X. One can see the rigorous proof
in [1].
Let us see an example to see how a covering space corresponds to a subgroup of the
fundamental group. We know that the real line is the universal covering of a circle.
Consider Figure 6. We have a triple cover of a X̃ of a circle. Let α be the path
which goes around the circle once (from a base point say x0). The cover corresponds

to going around the circle thrice i.e it is the path α3. So, p∗(π(X̃)) =< α3 > . Note

that < α3 > is exactly 3Z ⊂ Z. Here we can therefore say that the covering X̃
corresponds to the subgroup 3Z of Z.

Figure 6
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5. Conclusions and a way forward

5.1. The Galois correspondence. The above theorem proves the existence of
the universal covering. The theory we build on covering spaces gives us a one-one
correspondence between the covering spaces of a space and the conjugacy classes of
its fundamental group. We discuss the idea of the Galois correspondence to draw the
analogy between the two theories. We follow the discussion as given in [3]. Suppose
K is a field and L : K is a Galois extension. To every intermediate field M, we
associate Aut(L : M), the group of all M− automorphisms of L. So, K 7→ Aut(K :
L), the whole Galois group, while L 7→ Aut(L : L), the identity automorphism
of L. Conversely, to each subgroup H of the Galois group, we associate the field
{x ∈ L|α(x) = x for all α ∈ H}. Therefore, the Galois correspondence gives us
a one - one correspondence between the subgroups of the Galois group and the
intermediate field. In particular, if M and N are two intermediate subfields such
that M ⊂ N, then Aut(N : L) ⊂ Aut(M : L). The inclusion is also reversed in the
case of covering spaces. The trivial subgroup corresponds to the universal cover.
Also if H and G are two subgroups of π(X), such that H ⊂ G, then the cover
corresponding to H acts as a covering space of the cover corresponding to G. A lot
of similarity can already be seen between these two theories. A natural question to
ask is, whether we can further talk about these two theories as completely one and
try to solve problems in one by considering an analogous problem in the other.
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