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KEITH CONRAD

1. Introduction

Let L/K be a field extension. A K-automorphism of L is a field automorphism σ : L→ L
that fixes the elements of K: σ(c) = c for all c ∈ K. The set of K-automorphisms of L is
a group under composition and is denoted Aut(L/K). Its identity element is the identity
function on L. Studying properties of L/K through properties of the group Aut(L/K) is
the basic theme of Galois theory.

Example 1.1. Two R-automorphisms of C are the identity z 7→ z and complex conjugation
z 7→ z. We will show they are the only ones. If σ : C→ C is an R-automorphism, then for
all real a and b we have σ(a+ bi) = σ(a) + σ(b)σ(i) = a+ bσ(i), so σ is determined by σ(i)
and

i2 = −1 =⇒ σ(i2) = σ(−1)

=⇒ σ(i)2 = −1

=⇒ σ(i) = ±i.
If σ(i) = i, then σ(z) = z for all z ∈ C and if σ(i) = −i, then σ(z) = z for all z ∈ C.

From each intermediate field K ⊂ F ⊂ L we get a subgroup

(1.1) Aut(L/F ) = {σ ∈ Aut(L/K) : σ(α) = α for all α ∈ F}
in Aut(L/K). In the other direction, from each subgroup H of Aut(L/K) we get a field

(1.2) LH = {α ∈ L : σ(α) = α for all σ ∈ H},
which lies between K and L. (Check LH really is a field.) Both (1.1) and (1.2) concern the
equation σ(α) = α, but they quantify it in different ways, one over α and the other over σ.

The correspondences F ; Aut(L/F ) and H ; LH between intermediate fields in
the extension L/K and subgroups of Aut(L/K) is inclusion-reversing: if F ⊂ F ′ then

Aut(L/F ′) ⊂ Aut(L/F ), while if H ⊂ H ′ then LH
′ ⊂ LH .

L {id.}

F ′ Aut(L/F ′)

F Aut(L/F )

K Aut(L/K)
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It is straightforward to check that

(1.3) F ⊂ LAut(L/F ), H ⊂ Aut(L/LH).

That is, F is contained in the set of elements fixed by the automorphisms of L that fix F
and H is contained in the set of automorphisms of L that fix the elements fixed by H. (This
is practically a tautology, but you may need to read through that two times to see it.) What
we are after is a description of those finite extensions L/K where the two inclusions in (1.3)
become equalities for all intermediate fields F between K and L and all subgroups H of
Aut(L/K), so the correspondences we have described between intermediate fields between
K and L and subgroups of Aut(L/K) are inverses of each other. The description is due to
Galois.

For instance, at a minimum we want the numbers fixed by all K-automorphisms of L to
be just the elements of K: LAut(L/K) = K. Equivalently, each element of L not in K should
be moved by some K-automorphism of L.

Not every finite extension has this property. For instance, Aut(L/K) could be trivial

with [L : K] > 1, so LAut(L/K) = L 6= K. The following two examples of this phenomenon
contain the core difficulties we want to avoid.

Example 1.2. The extension Q( 3
√

2)/Q has prime degree, so the only intermediate fields
are Q and Q( 3

√
2). The group Aut(Q( 3

√
2)/Q) is trivial: if σ ∈ Aut(Q( 3

√
2)/Q) then the

equation 3
√

2
3

= 2 implies σ( 3
√

2)3 = 2 after applying σ to both sides, so σ( 3
√

2) = 3
√

2
because X3−2 has only one root in Q( 3

√
2). Since σ fixes Q pointwise and fixes 3

√
2, it fixes

every element of Q( 3
√

2).

Example 1.3. For a positive integer n > 1 and a field F , the polynomial Xn−u in F (u)[X]

is irreducible since it is Eisenstein at u. Let u1/n denote a root. The field F (u)(u1/n) =

F (u1/n) has degree n over F (u).
If n = p is prime and F = Fp then Xp−u has only one root in a splitting field over F (u):

Xp − u = (X − u1/p)p. Thus Aut(Fp(u
1/p)/Fp(u)) is trivial while [Fp(u

1/p) : Fp(u)] = p.

The problem in Example 1.2 is that X3 − 2 has 3 roots in a splitting field over Q but
the field Q( 3

√
2) is missing some of these roots: it is not the splitting field of X3 − 2 over

Q. This difficulty will be avoided by restricting our attention to normal field extensions (to
be defined later). Example 1.3 has a problem of a different sort: the polynomial Xp − u
has only one root at all in a splitting field over Fp(u). No matter how much we enlarge

Fp(u
1/p), u1/p will continue to be sent to itself by each Fp(u)-automorphism even though

u1/p 6∈ Fp(u). The trouble here is connected with inseparability. We will eventually want
to focus on separable extensions.

2. Field automorphisms and permutations of roots

Definition 2.1. The roots of a common irreducible polynomial in K[X] are called K-
conjugates.

Example 2.2. The numbers ±
√

2 are Q-conjugate since they both have minimal polyno-
mial X2−2 over Q, but they are not R-conjugate since

√
2 has minimal polynomial X−

√
2

and −
√

2 has minimal polynomial X +
√

2.

Example 2.3. In C the numbers i and −i are R-conjugates, as are (more generally) a+ bi
and a − bi. The name “complex conjugate” should be “real conjugate” from this point of
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view, since a+ bi and a− bi have the same minimal polynomial over R, but not C (unless
b = 0), but it’s too late to change the name.

Theorem 2.4. If σ ∈ Aut(L/K) and f(X) ∈ K[X], then σ(f(α)) = f(σ(α)) for all α ∈ L.
In particular, a K-automorphism of L permutes the roots of f(X) in L.

Proof. Write f(X) = cnX
n + cn−1X

n−1 + · · ·+ c1X + c0, with ci ∈ K. Then σ(ci) = ci, so

σ(f(α)) = σ
(
cnα

n + cn−1α
n−1 + · · ·+ c1α+ c0

)
= σ(cn)σ(α)n + σ(cn−1)σ(α)n−1 + · · ·+ σ(c1)σ(α) + σ(c0)

= cnσ(α)n + cn−1σ(α)n−1 + · · ·+ c1σ(α) + c0

= f(σ(α)).

If f(α) = 0 then f(σ(α)) = σ(f(α)) = σ(0) = 0, so σ sends each root of f(X) in L to a
root of f(X) in L. The roots of f(X) in L are a finite set and σ is an injective function, so
its effect on the roots must be a permutation: an injective function of a finite set to itself
is surjective too. �

Corollary 2.5. The group Aut(L/K) permutes K-conjugates in L.

Proof. Let α ∈ L have minimal polyomial π(X) in K[X]. Apply Theorem 2.4 to the roots
of π(X) in L. �

Example 2.6. Let K = Q and L = Q(
√

2,
√

3). A K-automorphism of L sends
√

2 to
√

2
or −
√

2, because
√

2 has minimal polynomial X2−2 ∈ Q[X], whose roots in L are ±
√

2. A
K-automorphism of L can’t send

√
2 to

√
3, for instance, since

√
3 is not a root of X2 − 2.

While Corollary 2.5 puts a constraint on where a K-automorphism of L could send
√

2 (to
roots of X2 − 2), it does not assure us that all those options are in fact possible.

Example 2.7. Let K = Q and L = Q( 4
√

2). The field L contains
√

2 = 4
√

2
2
, and a

K-automorphism of L can only send
√

2 to ±
√

2 by the same argument as in the previous
example. But in fact it is impossible for a K-automorphism of L to send

√
2 to −

√
2.

Each σ ∈ Aut(Q( 4
√

2)/Q) sends 4
√

2 to ± 4
√

2 (roots of X4 − 2 in Q( 4
√

2) are permuted

by σ), and
√

2 = 4
√

2
2
, so σ(

√
2) = σ( 4

√
2
2
) = σ( 4

√
2)2 = (± 4

√
2)2 =

√
2. Therefore no

Q-automorphism of Q( 4
√

2) sends
√

2 to −
√

2 even though they have the same minimal
polynomial over Q.

Example 2.8. Let K = Q and L = Q( 3
√

2, ω), where ω is a nontrivial cube root of unity.
The polynomial X3 − 2 has 3 roots in L: 3

√
2, ω 3
√

2, and ω2 3
√

2. Each K-automorphism
of L permutes these 3 roots. Are all six permutations of these 3 roots realized by K-
automorphisms of L?

Example 2.9. Let K = Q and L = Q( 4
√

2, i). The polynomial X4− 2 has all four roots in
L: ± 4

√
2 and ±i 4

√
2. These four roots have 4! = 24 permutations. Is every permutation of

these four numbers the restriction of some K-automorphism of L?

We will see later that for special finite extensions L/K, every two K-conjugates α and β
in L are related by Aut(L/K): β = σ(α) for some σ ∈ Aut(L/K). This connects the study
of roots of an irreducible polynomial to group theory.
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3. Bounding the automorphism group

If L/K is a finite extension of fields, we will show the group Aut(L/K) is finite and then
try to bound its size.

Theorem 3.1. For every finite extension L/K, the group Aut(L/K) is finite.

Proof. Write L = K(α1, . . . , αn). Every σ ∈ Aut(L/K) is determined by σ(α1), . . . , σ(αn),
and σ(αi) is restricted to lie among the finitely many K-conjugates of αi in L. So each
element of Aut(L/K) is determined by a finite amount of information, which makes the
group Aut(L/K) finite. �

In the special case that L/K is a splitting field of some polynomial in K[X], we will
show in Corollary 3.6 that [L : K] is an upper bound on |Aut(L/K)|. This will follow
from a technical theorem on the number of ways to extend an isomorphism of fields to an
isomorphism of splitting fields.

Every field homomorphism σ : F → F ′ extends to a homomorphism σ : F [X]→ F ′[X] as
follows: for f(X) =

∑n
i=0 ciX

i ∈ F [X], set (σf)(X) =
∑n

i=0 σ(ci)X
i ∈ F ′[X]. We call this

map “applying σ to the coefficients.” For α ∈ F , σ(f(α)) = (σf)(σ(α)). That is proved in
the same way as Theorem 2.4, but unlike there the coefficients of f(X) are not fixed by σ
but get replaced by their σ-values.

Example 3.2. Let F = F ′ = Q(i), σ : F → F ′ be complex conjugation, and f(X) =
X2 + iX + 1− 3i. In F ′[X], (σf)(X) = X2 + σ(i)X + σ(1− 3i) = X2 − iX + 1 + 3i.

For each α ∈ F , we have

σ(f(α)) = σ(α2 + iα+ 1− 3i) = σ(α2) + σ(iα) + σ(1− 3i) = σ(α)2 − iσ(α) + 1 + 3i,

and observe that this final value is (σf)(σ(α)), not (σf)(α).

Applying σ to coefficients is a ring homomorphism F [X] → F ′[X]: σ(f + g) = σf + σg
and σ(fg) = (σf)(σg) for all f and g in F [X], and trivially σ(1) = 1. It also preserves
degrees and the property of being monic. If f(X) splits completely in F [X] then (σf)(X)
splits completely in F ′[X] since linear factors get sent to linear factors.

Example 3.3. Continuing with the notation of the previous example, X2 + iX + 1− 3i =
(X − (1 + i))(X + (1 + 2i)) and

σ(X − (1 + i))σ(X + (1 + 2i)) = (X − 1 + i)(X + 1− 2i) = X2 − iX + 1 + 3i,

which is σ(X2 + iX + 1− 3i).

The extension of a homomorphism F → F ′ to a homomorphism F [X]→ F ′[X] by acting
on coefficients will be used in the proof of the next theorem.

Theorem 3.4. Let σ : K → K ′ be an isomorphism of fields, f(X) ∈ K[X], L be a splitting
field of f(X) over K and L′ be a splitting field of (σf)(X) over K ′. Then [L : K] = [L′ : K ′],
σ extends to an isomorphism L→ L′ and the number of such extensions is at most [L : K].

L // L′

K
σ // K ′
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Proof. (This proof is long, and might be skipped on a first reading.)
We argue by induction on [L : K]. If [L : K] = 1 then f(X) splits completely in K[X]

so (σf)(X) splits completely in K ′[X]. Therefore L′ = K ′, so [L′ : K ′] = 1. The only
extension of σ to L in this case is σ.

Suppose [L : K] > 1. Since L is generated as a field over K by the roots of f(X), f(X)
has a root α ∈ L that is not in K. Fix this α for the rest of the proof. Let π(X) be the
minimal polynomial of α over K, so α is a root of π(X) and π(X) | f(X) in K[X]. If
there’s going to be an isomorphism σ̃ : L → L′ extending σ, then σ̃ must send α to a root
of (σπ)(X):

π(α) = 0⇒ σ̃(π(α)) = σ̃(0)⇒ (σ̃π)(σ̃(α)) = 0⇒ (σπ)(σ̃(α)) = 0,

where the last step comes from π(X) having coefficients inK (so σ̃ = σ on those coefficients).
So we know where the candidates for σ̃(α) have to come from: roots of (σπ)(X).

Now we show (σπ)(X) has a root in L′. Since σ is an isomorphism from K to K ′, applying
σ to coefficients is a ring isomorphism from K[X] to K ′[X] (the inverse map is applying
σ−1 to coefficients in K ′[X]), so π(X) | f(X) ⇒ (σπ)(X) | (σf)(X). Since π(X) is monic
irreducible, (σπ)(X) is also monic irreducible (a ring isomorphism preserves irreducibility).
The polynomial (σf)(X) splits completely in L′[X] by the definition of L′, so its factor
(σπ)(X) also splits completely over L′ and thus has a root in L′. Choose a root β ∈ L′ of
(σπ)(X). Set d = deg π(X) = deg(σπ)(X), so d > 1 (because d = [K(α) : K] > 1) and there
are at most d choices for β. Consider the following field diagram, where the intermediate
fields have degree d since α and β have minimal polynomials π(X) and (σπ)(X) over K
and K ′.

L // L′

K(α)

d

// K ′(β)

d

K
σ // K ′

To show there is a unique extension of σ to a field isomorphism K(α)→ K ′(β) such that
σ(α) = β, first we handle uniqueness. If σ′ : K(α)→ K ′(β) extends σ and σ′(α) = β, then
the value of σ′ is determined everywhere on K(α) because

(3.1) σ′

(
m∑
i=0

ciα
i

)
=

m∑
i=0

σ′(ci)(σ
′(α))i =

m∑
i=0

σ(ci)β
i.

In other words, a K-polynomial in α has to go over to the corresponding K ′-polynomial in
β where σ is applied to the coefficients. So σ′ is unique. To prove σ′ exists, we will build
an isomorphism from K(α) to K ′(β) with the help of the evaluation isomorphisms

(3.2) K[X]/(π(X)) ∼= K(α) and K ′[X]/((σπ)(X)) ∼= K ′(β)

that sendX to α and to β. On the level of polynomial rings, the isomorphismK[X]→ K ′[X]
that is σ on coefficients sends π(X) to (σπ)(X), so it identifies the ideals (π(X)) in K[X]
and ((σπ)(X)) in K ′[X]. Reducing K[X] and K ′[X] modulo these ideals tells us

(3.3) K[X]/(π(X)) ∼= K ′[X]/((σπ)(X))
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where g(X) mod π(X) 7→ (σg)(X) mod (σπ)(X). Composition of the isomorphisms in (3.2)
and (3.3) provides us with an isomorphism K(α) → K ′(β) that, by tracing through its
construction, equals σ on K and sends α to β. So σ′ exists and we place it in the field
diagram below.

(3.4) L // L′

K(α)

d

σ′
// K ′(β)

d

K
σ // K ′

Now we can use induction on degrees of splitting fields by the trick of replacing the
base fields K and K ′ with K(α) and K ′(β). Since L is a splitting field of f(X) over K,
it’s also a splitting field of f(X) over the larger field K(α). Similarly, L′ is a splitting
field of (σf)(X) over K ′ and thus also over K ′(β). Since f(X) has its coefficients in K,
(σ′f)(X) = (σf)(X). So the top square in the diagram above is similar to the square in the
theorem (same polynomials and same splitting fields, with bigger base fields), except now
the splitting field degrees have dropped: since d > 1,

[L : K(α)] =
[L : K]

d
< [L : K].

By induction, [L : K(α)] = [L′ : K ′(β)] and σ′ has an extension to a field isomorphism
L→ L′. Since σ′ extends σ, σ has an extension to an isomorphism L→ L′ and

[L : K] = [L : K(α)]d = [L′ : K ′(β)]d = [L′ : K ′].

It remains to show σ has at most [L : K] extensions to an isomorphism L→ L′. First we
show every isomorphism σ̃ : L→ L′ extending σ arises as the extension of some intermediate
isomorphism σ′ of K(α) with a subfield of L′. From the start of the proof, σ̃(α) has to be
a root of (σπ)(X). Define β := σ̃(α). Since σ̃|K = σ, the restriction of σ̃ to K(α) is a
field homomorphism that is σ on K and sends α to β, so σ̃|K(α) is an isomorphism with
image K ′(σ̃(α)) = K ′(β). Therefore σ̃ on L is a lift of the intermediate field isomorphism
σ′ := σ̃|K(α).

L
σ̃ // L′

K(α)

d

σ′
// K ′(β)

d

K
σ // K ′

By induction on degrees of splitting fields, σ′ lifts to at most [L : K(α)] isomorphisms
L→ L′. Since σ′ is determined by σ′(α), which is a root of (σπ)(X), the number of maps σ′

is at most deg(σπ)(X) = d. The number of isomorphisms L→ L′ that lift σ is the number
of maps σ′ out of K(α) times the number of extensions of each σ′ to an isomorphism L→ L′,
and that total is at most d[L : K(α)] = [L : K]. �



THE GALOIS CORRESPONDENCE 7

Example 3.5. The extension Q(
√

2,
√

3)/Q has degree 4. In Theorem 3.4 if we use K =
K ′ = Q, L = L′ = Q(

√
2,
√

3), and σ = the identity map on Q, then there are at most 4
automorphisms of Q(

√
2,
√

3) that are the identity on Q. That is, |Aut(Q(
√

2,
√

3)/Q)| ≤ 4.
This does not guarantee that our bound of 4 is the actual size (which it is).

Here is the most important special case of Theorem 3.4.

Corollary 3.6. If L is a splitting field over K of a polynomial in K[X], then |Aut(L/K)| ≤
[L : K].

Proof. Apply Theorem 3.4 with K ′ = K, L′ = L, and σ the identity function on K.
Extensions of the identity function on K to isomorphisms L→ L are precisely the elements
of Aut(L/K). (Notice, incidentally, that to make the induction work in the proof of Theorem
3.4 we must allow a general isomorphism of base fields even if our main application of interest
is the case K = K ′ and σ equal to the identity on K.) �

Now we will add a separability assumption and get a stronger conclusion: the upper
bound in Theorem 3.4 is reached.

Theorem 3.7. Let σ : K → K ′ be an isomorphism of fields, f(X) ∈ K[X], L be a splitting
field of f(X) over K and L′ be a splitting field of (σf)(X) over K ′. If f(X) is separable
then there are [L : K] extensions of σ to an isomorphism L→ L′.

Proof. We may assume [L : K] > 1. As in the previous proof, let α be a root of f(X) that
is not in K, π(X) be its minimal polynomial over K, and d = deg π(X).

Because f(X) is separable, (σf)(X) is separable too. One way to show this is with the
characterization of separability in terms of relative primality to the derivative: we can write

(3.5) f(X)u(X) + f ′(X)v(X) = 1

for some u(X) and v(X) in K[X]. Applying σ to coefficients commutes with forming
derivatives (that is, σ(f ′) = (σf)′), so if we apply σ to coefficients in (3.5) then we get

(σf)(X)(σu)(X) + (σf)′(X)(σv)(X) = 1,

so (σf)(X) and its derivative are relatively prime in K ′[X]. This last polynomial identity
proves (σf)(X) is separable. Every factor of a separable polynomial is separable, so (σπ)(X)
is separable and therefore has d roots in L′ since it splits completely over L′.

From the proof of Theorem 3.4, the extensions of σ to an embedding σ′ : K(α)→ L′ are
in bijection with the roots β of (σπ)(X) in L′. Since (σπ)(X) splits completely over L′ and
is separable, it has d roots in L′, so the number of maps σ′ is d (and not just at most d).

L // L′

K(α)

d

σ′
// K ′(β)

d

K
σ // K ′

Since [L : K(α)] < [L : K] and L is a splitting field of f(X) over K(α), by induction on
the degree of a splitting field (along with the new separability hypothesis on f(X)), each σ′

has [L : K(α)] extensions to an isomorphism L → L′. Since there are d choices for σ′, the
total number of extensions of σ to an isomorphism L→ L′ is d[L : K(α)] = [L : K]. �
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Corollary 3.8. If L/K is the splitting field of a separable polynomial then |Aut(L/K)| =
[L : K].

Proof. Apply Theorem 3.7 with K ′ = K, L′ = L, and σ the identity function on K. �

Example 3.9. The extension Q(
√

2,
√

3)/Q is a splitting field of (X2 − 2)(X2 − 3). Its
degree is 4, so |Aut(Q(

√
2,
√

3)/Q)| = 4. This improves Example 3.5 from an upper bound
of 4 to an exact count of 4. We will use this a priori count to find all the automorphisms.

Since
√

2 and
√

3 generate the extension Q(
√

2,
√

3)/Q, each σ ∈ Aut(Q(
√

2,
√

3)/Q)
is determined by σ(

√
2) and σ(

√
3), which are ±

√
2 and ±

√
3. Combining the choices

in all possible ways, we get at most 4 choices for σ. See Table 1. Corollary 3.8 says
there are 4 choices for σ, so every possibility in Table 1 must work. Notice that we draw
this conclusion because we know in advance how many σ’s exist., before computing the
possibilities explicitly.

σ(
√

2) σ(
√

3)√
2

√
3√

2 −
√

3

−
√

2
√

3

−
√

2 −
√

3
Table 1.

Example 3.10. Let K = Q(i) and σ be complex conjugation on K. The number 1 + 2i is
not a square in K (pf: its norm down to Q is 5, which is not a square in Q). Thus the field
L = Q(i,

√
1 + 2i) has degree 2 over K. Complex conjugation on K sends X2 − (1 + 2i) to

X2− (1−2i) in K[X], so by Theorem 3.7 with K ′ = K, complex conjugation on K extends
in two ways to an isomorphism L → L′, where L′ = Q(i,

√
1− 2i). These two extensions

of complex conjugation from K → K to L → L′ are determined by where
√

1 + 2i is sent
in L′; a root of X2 − (1 + 2i) must go to a root of X2 − (1− 2i), so

√
1 + 2i must be sent

to one of the two square roots of 1− 2i in L′. Theorem 3.7 tells us that both options work
(that is, each choice arises from an isomorphism L→ L′ extending complex conjugation).

Example 3.11. The extension Q( 4
√

2)/Q has degree 4. It is not the splitting field of X4−2.
We will show the group Aut(Q( 4

√
2)/Q) has order 2, which is smaller than the degree of

the extension.
In Example 2.7 we saw that every Q-automorphism of Q( 4

√
2) fixes

√
2, and therefore fixes

every number in Q(
√

2). So Aut(Q( 4
√

2)/Q) ⊂ Aut(Q( 4
√

2)/Q(
√

2)). The reverse inclusion
is obvious (yes?), so Aut(Q( 4

√
2)/Q) = Aut(Q( 4

√
2)/Q(

√
2)). While Q( 4

√
2)/Q does not

appear to be a splitting field, the quadratic extension Q( 4
√

2)/Q(
√

2) is a splitting field:
it’s the splitting field for T 2 −

√
2, with roots ± 4

√
2, so |Aut(Q( 4

√
2)/Q(

√
2))| = 2. What

are the two automorphisms? They’re determined by where they send 4
√

2, and this number
can only go to ± 4

√
2 (the roots of X2 −

√
2). Since these are just two possibilities, and we

know there are two automorphisms, both choices work. Explicitly, the automorphism of
Q( 4
√

2)/Q sending 4
√

2 to 4
√

2 is the identity and the automorphism of Q( 4
√

2)/Q sending
4
√

2 to − 4
√

2 has the formula x+ y 4
√

2 7→ x− y 4
√

2 with x, y ∈ Q(
√

2).

In Theorem 3.7, it’s crucial that L′ is the splitting field of the polynomial (σf)(X), and
not the splitting field of f(X) itself (unless σ is the identity on K). Theorem 3.7 does not
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say that each automorphism of K extends to an automorphism of a splitting field over K;
in fact, such an extension to a splitting field might not exist if σ is not the identity on K.

Example 3.12. LetK = Q(i). We saw in Example 3.10 that complex conjugation onK has
two extensions to an isomorphism L→ L′, where L = Q(i,

√
1 + 2i) and L′ = Q(i,

√
1− 2i).

However, complex conjugation has no extension to an automorphism of L.
Indeed, suppose there is an automorphism ϕ : L→ L that is complex conjugation on K.

Set α =
√

1 + 2i. Then α2 = 1 + 2i, so applying ϕ to both sides implies ϕ(α)2 = 1 − 2i.
Therefore 1 − 2i would be a square in L, so

√
1− 2i ∈ L, which implies L′ = L. We will

show this is impossible by contradiction.
Writing L′ = L as K(

√
1− 2i) = K(

√
1 + 2i), it follows that (1 + 2i)/(1− 2i) = −3/5 +

(4/5)i is a square in K. Writing −3/5 + (4/5)i = (a+ bi)2 with rational a and b, equating
real and imaginary parts implies a2 − b2 = −3/5 and b = 2/(5a). Substituting the second
equation into the first and clearing denominators, 25a4 + 15a2 − 4 = 0. However, 25X4 +
15X2 − 4 = (5X2 − 1)(5X2 + 4) has no rational roots.

We’re interested in those finite extensions L/K where

(3.6) |Aut(L/K)| = [L : K].

Corollary 3.8 says this happens if L is the splitting field over K of a separable polynomial.
It is a significant fact, from the next theorem, that the converse is true as well.

Theorem 3.13. If L/K is a finite extension and |Aut(L/K)| = [L : K] then

(1) LAut(L/K) = K,
(2) L/K is separable (that is, every number in L has a separable minimal polynomial

in K[X]),
(3) for α ∈ L, its K-conjugates are σ(α) as σ runs over Aut(L/K),
(4) every irreducible polynomial in K[X] with a root in L splits in L[X],
(5) L is the splitting field over K of a separable polynomial.

Proof. First we show (5) is a consequence of (2) and (4). Write L = K(α1, . . . , αn) and let
πi(X) be the minimal polynomial of αi in K[X]. By (2), each πi(X) is separable in K[X].
By (4), each πi(X) splits completely over L since πi(X) has a root αi in L. Therefore L is
a splitting field over K of the product of the πi(X)’s without repetition, and that product
is separable.

Now we turn to the proof of the first four conditions. Set

F = LAut(L/K),

so F consists of the elements of L that are fixed by Aut(L/K). Eventually we will see
F = K, but for now we can just say this is a field between K and L.

L

F

K

Since K ⊂ F ⊂ L, Aut(L/F ) ⊂ Aut(L/K). Each element of Aut(L/K) fixes each element
of F by the definition of F , so Aut(L/K) ⊂ Aut(L/F ). Therefore Aut(L/K) = Aut(L/F ),
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so (by definition) LAut(L/F ) = F . In other words, we’ve proved (1) with F in place of K.
We are going to prove (2), (3), and (4) with F in place of K, and only then will we prove
F = K (part (1)), after which we get (2), (3), and (4) as in the theorem using K.

To show L/F is separable, pick α ∈ L. We are going to directly write down a separable
polynomial in F [X] with α as a root. Let {σ(α) : σ ∈ Aut(L/F )} have distinct members
{σ1(α), . . . , σm(α)}. (For example, if α ∈ F then this set has one term in it even though
Aut(L/F ) could be large.) We will show the polynomial with these different roots,

hα(X) =

m∏
i=1

(X − σi(α)),

is in F [X]; note it is separable by construction. Why are the coefficients of hα(X) in
F? For σ ∈ Aut(L/F ), each σ(σi(α)) = (σσi)(α) is some σj(α) by the definition of
{σ1(α), . . . , σm(α)}. So σ sends this finite set back to itself. It does so injectively, so it
must do so surjectively too. Therefore applying σ to coefficients, which is a ring automor-
phism of L[X], sends hα(X) to

m∏
i=1

(X − σ(σi(α))) =

m∏
j=1

(X − σj(α)) = hα(X).

Thus hα(X) ∈ LAut(L/F )[X] = F [X].
Next we show hα(X) is the minimal polynomial of α in F [X]. Suppose f(X) ∈ F [X] has

α as a root. We will show hα(X) | f(X). For σ ∈ Aut(L/F ), f(σ(α)) = σ(f(α)) = σ(0) = 0,
so f(X) is divisible by X − σ(α). Running over the distinct values of σ(α) shows f(X) is
divisible by their product hα(X), so hα(X) is the minimal polynomial of α in F [X]. From
the definition of hα(X) and its minimality, the F -conjugates of α are σ(α) as σ runs over
Aut(L/F ), which is (3) with F in place of K.

To show every irreducible π(X) ∈ F [X] with a root in L splits in L[X], let γ ∈ L be a
root of π(X). Since π(X) is irreducible over F , it is the minimal polynomial of γ in F [X],
so by our previous construction of minimal polynomials we have π(X) = hγ(X). From the
definition of hγ(X), this polynomial splits completely in L[X].

So far we have proved (2), (3), and (4) with F in place of K. The reasoning at the start
of the proof that (2) and (4) imply (5) shows, with F in place of K, that L is a splitting
field over F of a separable polynomial. Therefore |Aut(L/F )| = [L : F ] by Corollary
3.8. Since Aut(L/K) = Aut(L/F ) and by hypothesis |Aut(L/K)| = [L : K], we have
[L : K] = [L : F ]. Since K ⊂ F ⊂ L, the degree formula implies F = K. Now (1), (2), (3),
and (4) are true for K, so we’re done. �

Condition (4) in Theorem 3.13 has a name.

Definition 3.14. An algebraic extension L/K is called normal if every irreducible in K[X]
with a root in L splits completely in L[X].

Example 3.15. A quadratic extension, separable or not (e.g., even in characteristic 2) is
normal. If [L : K] = 2 then every element of L has a minimal polynomial in K[X] of degree
1 or 2, so only monic irreducibles in K[X] of degree 1 or 2 could have a root in L. Skipping
over the trivial linear case, if X2 + bX + c ∈ K[X] has the root r ∈ L, so r2 + br + c = 0,
then

X2 + bX + c = (X − r)(X + b+ r).

Therefore this polynomial has a full set of roots in L: r and −b− r.
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By Theorem 3.13, if |Aut(L/K)| = [L : K] then L/K is normal because the minimal
polynomial of each α ∈ L over K is hα(X), which splits completely over L by its definition.
Corollary 3.8 tells us now that the splitting field of a separable polynomial is a normal
extension.

Example 3.16. The extensions Q( 3
√

2, ω)/Q, Q( 4
√

2, i)/Q, and Q(
√

2,
√

3)/Q are normal
since Q( 3

√
2, ω) is a splitting field over Q of X3 − 2, Q( 4

√
2, i) is a splitting field over Q of

X4 − 2, and Q(
√

2,
√

3) is a splitting field over Q of (X2 − 2)(X2 − 3). That is, for each
number in one of the fields Q( 3

√
2, ω), Q( 4

√
2, i), or Q(

√
2,
√

3), all of its Q-conjugates are
also in the field.

Example 3.17. The extensions Q( 3
√

2)/Q and Q( 4
√

2)/Q are not normal: X3 − 2 and
X4 − 2 are irreducible in Q[X] and they have no multiple roots, but X3 − 2 has only one
root in Q( 3

√
2) and X4 − 2 has only two roots in Q( 4

√
2).

Since an irreducible polynomial in K[X] with a root in L is the minimal polynomial over
K of that root, L/K is normal if and only if for each α ∈ L the minimal polynomial of α
over K splits completely in L[X].

The following theorem, which we will not need, lets us recognize normal extensions in
practice. The proof will use the theorem that symmetric polynomials are polynomials in
the elementary symmetric functions.

Theorem 3.18. For a finite extension L/K, the following are equivalent:

(1) L/K is normal,
(2) L is the splitting field over K of a polynomial in K[X].

Proof. To show (1) implies (2), write L = K(α1, . . . , αr) = K[α1, . . . , αr] and let fi(X) ∈
K[X] be the minimal polynomial of αi in K[X]. Since L/K is normal, each fi(X) splits
completely in L[X] (because it has a root in L). Therefore L is a splitting field over K of
f1(X) · · · fr(X).

To show (2) implies (1) we will use the symmetric function theorem: every symmetric
polynomial in n variables with coefficients in K is a polynomial in the elementary symmetric
functions of those n variables with coefficients in K. Let π(X) ∈ K[X] be irreducible with
a root in L, say α. We want to show π(X) splits completely over L. We are going to
show π(X) is a factor of a polynomial in K[X] that splits completely over L, so π(X) splits
completely over L.

From (2), there is a polynomial f(X) ∈ K[X] for which L is a splitting field. Let
n = deg f(X) and factor f(X) in L[X] as (X−β1) · · · (X−βn). Write α = g(β1, . . . , βn) for
a polynomial g(X1, . . . , Xn) ∈ K[X1, . . . , Xn]. Now consider the polynomial whose roots
are g evaluated at all permutations of the βi’s:

h(X) =
∏
σ∈Sn

(X − g(βσ(1), . . . , βσ(n)))

This has the factor X − α, so h(α) = 0. By construction, the coefficients of h(X) are
symmetric polynomials in β1, . . . , βn with coefficients in K. Therefore the coefficients of
h(X) are polynomials in the elementary symmetric functions of β1, . . . , βn with coefficients
in K. Those elementary symmetric functions are the coefficients of f(X) (up to sign) and
thus lie in K, so h(X) ∈ K[X]. Since h(α) = 0, h(X) is divisible by the minimal polynomial
of α in K[X], which is π(X). Since π(X) | h(X) and h(X) splits completely in L[X], also
π(X) splits completely in L[X]. �
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It should not be expected that the polynomial h(X) constructed in the proof will be the
minimal polynomial of α over K since it has degree n!, which is not sensitive to the choice
of α. (In fact, h(X) will be the minimal polynomial only if K(α) = L and [L : K] = n!. In
particular, if K(α) 6= L then h(X) is not the minimal polynomial.)

Example 3.19. The splitting field of X4 − 2 over Q is Q( 4
√

2, i), so Theorem 3.18 tells
us Q( 4

√
2, i) is a normal extension of Q. We will use the method of proof of the theorem

to find a monic polynomial in Q[X] with root α = (1 + i) 4
√

2. First we have to write α in
terms of the roots of X4 − 2. Set

β1 =
4
√

2, β2 = − 4
√

2, β3 = i
4
√

2, β4 = −i 4
√

2.

Then α = 4
√

2 + i 4
√

2 = β1 + β3. A monic polynomial in Q[X] with root α is

h(X) =
∏
σ∈S4

(X − (βσ(1) + βσ(3))).

The degree of this polynomial is 24, while [Q( 4
√

2, i) : Q] = 8, so h(X) is definitely not
going to be the minimal polynomial and you really don’t want to compute h(X) by hand.

There is an ad hoc trick in this case that gets us a polynomial over Q with root α of
smaller degree. Since α2 = (2i)

√
2, α4 = −8, so α is a root of X4 + 8. And it turns out

that h(X) = (X4 + 8)6.

Example 3.20. For u transcendental over Fp, the extension Fp(u
1/p)/Fp(u) of degree p

is normal since Fp(u
1/p) is a splitting field over Fp(u) of Xp − u: u1/p is the only root of

Xp − u in characteristic p.

4. Galois extensions

In Section 3 we saw that a finite extension L/K satisfying |Aut(L/K)| = [L : K] also

satisfies further conditions: LAut(L/K) = K and L/K is both separable and normal. With
no new work, it turns out these properties are all equivalent to each other.

Theorem 4.1. For a finite extension L/K, the following are equivalent:

(a) |Aut(L/K)| = [L : K],

(b) LAut(L/K) = K,
(c) L/K is separable and normal,
(d) L is the splitting field over K of a separable polynomial in K[X].

Proof. That (a) implies (b) was shown in the proof of Theorem 3.13. Also in the proof

of Theorem 3.13, we showed the condition LAut(L/F ) = F implies L/F is separable and

normal using the hα(X) construction. If we make the hypothesis that LAut(L/K) = K, then
running through that same argument with K in place of F shows (b) implies (c). The first
paragraph of the proof of Theorem 3.13 shows (c) implies (d). Corollary 3.8 says (d) implies
(a). �

Theorem 4.1 implies a sharper form of the inequality in Corollary 3.6, which is applicable
to all finite extensions (not just splitting fields).

Corollary 4.2. If L/K is a finite extension then |Aut(L/K)| | [L : K].

Proof. Since L/K is finite, Aut(L/K) is a finite group by Theorem 3.1. Let F = LAut(L/K).

Then Aut(L/K) = Aut(L/F ), so F = LAut(L/F ). By Theorem 4.1, |Aut(L/F )| = [L : F ],
so |Aut(L/K)| = [L : F ], which is a factor of [L : K]. �



THE GALOIS CORRESPONDENCE 13

Corollary 4.3. If L/K is a finite extension that is either inseparable or not normal then
|Aut(L/K)| < [L : K].

Proof. By Corollary 4.2, |Aut(L/K)| ≤ [L : K]. From Theorem 4.1, if L/K is inseparable
or not normal then |Aut(L/K)| 6= [L : K], so |Aut(L/K)| < [L : K]. �

Corollary 4.3 explains why the inequality |Aut(Fp(u
1/p)/Fp(u))| < [Fp(u

1/p) : Fp(u)]

from Example 1.3 can’t be turned into an equality by enlarging the top field Fp(u
1/p). The

inseparability of u1/p over Fp(u) is a fatal obstruction.

Definition 4.4. A finite extension L/K is called Galois when it satisfies the equivalent
properties of Theorem 4.1. When L/K is a Galois extension, the group Aut(L/K) is
denoted Gal(L/K) and is called the Galois group of the extension.

For a finite Galois extension L/K, Theorem 4.1 tells us |Gal(L/K)| = [L : K] and

LGal(L/K) = K.

Example 4.5. Every quadratic extension L/K outside of characteristic 2 is Galois. Indeed,

by completing the square we can write L = K(
√
d) for some nonsquare d ∈ K×, and X2−d

is separable outside characteristic 2. Thus L is a splitting field over K for X2 − d. The
Galois group has size 2, so it has one non-identity automorphism. An automorphism in
Gal(K(

√
d)/K) is determined by its value ±

√
d on

√
d. The nontrivial element of Gal(L/K)

is frequently called the conjugation of L. For example, the elements of Gal(C/R) are the
identity and complex conjugation.

Example 4.6. The field Q( 3
√

2, ω) is a splitting field over Q for X3− 2, which is separable
since every irreducible in Q[X] is separable. So Q( 3

√
2, ω)/Q is a Galois extension. By

Theorem 4.1, the number of field automorphisms of Q( 3
√

2, ω)/Q is [Q( 3
√

2, ω) : Q] = 6. (For
comparison, recall from Example 1.2 that the number of field automorphisms of Q( 3

√
2)/Q

is 1, even though the field extension has degree 3: there is just nowhere for 3
√

2 to go in
Q( 3
√

2) except to itself.) We will give two ways to think about Gal(Q( 3
√

2, ω)/Q).

Q( 3
√

2, ω)

Q( 3
√

2)

3
Q(ω)

Q

2

For the first way, each σ in Gal(Q( 3
√

2, ω)/Q) is determined by its effect on the 3 roots
of X3 − 2, which are 3

√
2, ω 3
√

2, and ω2 3
√

2, since these roots generate the top field over
the bottom field (note ω = ω 3

√
2/ 3
√

2 is a ratio of two cube roots of 2). There are at
most 6 permutations of these 3 roots, and since we know there are 6 automorphisms every
permutation of the roots comes from an automorphism of the field extension. Therefore
Gal(Q( 3

√
2, ω)/Q) ∼= S3 with S3 thought of as the symmetric group on the set of 3 roots of

X3 − 2.
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For another viewpoint, each σ in the Galois group is determined by the two values
σ( 3
√

2) ∈ { 3
√

2, ω 3
√

2, ω2 3
√

2} and σ(ω) ∈ {ω, ω2}. Therefore there are at most 3 · 2 = 6
possibilities for σ. Since 6 is the number of automorphisms, all of these possibilities really
work: each choice of a root of X3 − 2 for σ( 3

√
2) and a nontrivial cube root of unity for

σ(ω) does come from an automorphism σ. Write σ(ω) = ωaσ where aσ ∈ (Z/(3))× and
σ( 3
√

2) = ωbσ 3
√

2 where bσ ∈ Z/(3). For two automorphisms σ and τ ,

σ(τ(ω)) = σ(ωaτ ) = σ(ω)aτ = ωaσaτ

and

σ(τ(
3
√

2)) = σ(ωbτ
3
√

2) = σ(ω)bτσ(
3
√

2) = ωaσbτωbσ
3
√

2 = ωaσbτ+bσ
3
√

2.

Looking at the exponents of ω on the right side of these two equations, composition of σ
and τ behaves like multiplication of invertible matrices ( a b0 1 ) with entries in Z/(3), since

( a b0 1 )( a
′ b′
0 1 ) = ( aa

′ ab′+b
0 1

). So Gal(Q( 3
√

2, ω)/Q) is isomorphic to the group Aff(Z/(3)) of

mod 3 invertible matrices ( a b0 1 ) by σ 7→ ( aσ bσ0 1 ).

That we found two different models for Gal(Q( 3
√

2, ω)/Q), as S3 and as Aff(Z/(3)), is
no surprise since both of these groups are nonabelian and every two nonabelian groups of
size 6 are isomorphic.

Example 4.7. The extension Q( 4
√

2, i)/Q is Galois by the same reasoning as in the previous
example: the top field is the splitting field over Q forX4−2, which is separable. The diagram
below shows some of the intermediate fields, but these are not all the intermediate fields.
For instance, Q(

√
2) is inside Q( 4

√
2) and Q(i 4

√
2). (This is not the only missing subfield.)

Q( 4
√

2, i)

Q(i 4
√

2)

4

Q( 4
√

2)

4 Q(i)

Q

2

Although every element of Gal(Q( 4
√

2, i)/Q) permutes the 4 roots of X4 − 2, not all
24 permutations of the roots are realized by the Galois group. (This is a contrast to
Gal(Q( 3

√
2, ω)/Q).) For example, 4

√
2 and − 4

√
2 add to 0, so under a field automorphism

these two roots go to roots that are also negatives of each other. No field automorphism
of Q( 4

√
2, i)/Q could send 4

√
2 to i 4

√
2 and − 4

√
2 to 4

√
2 because that doesn’t respect the

algebraic relation x+ y = 0 that holds for x = 4
√

2 and y = − 4
√

2.
To figure out what Gal(Q( 4

√
2, i)/Q) is concretely, we think about an automorphism σ

by what it does to 4
√

2 and i, rather than what it does to all the fourth roots of 2. Since
σ( 4
√

2) has to be a root of X4 − 2 (4 possible values) and σ(i) has to be a root of X2 + 1
(2 possible values), there are at most 4 · 2 = 8 automorphisms of Q( 4

√
2)/Q. Because

[Q( 4
√

2, i) : Q] = 8, Gal(Q( 4
√

2, i)/Q) has size 8 and therefore all assignments of σ( 4
√

2) and
σ(i) to roots of X4 − 2 and X2 + 1, respectively, must be realized by field automorphisms.
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Let r and s be the automorphisms of Q( 4
√

2, i)/Q determined by

r(
4
√

2) = i
4
√

2, r(i) = i, s(
4
√

2) =
4
√

2, s(i) = −i.

By taking powers and products (that is, composites) of automorphisms, we obtain the
following table of 8 different automorphisms of Q( 4

√
2, i)/Q. (They are different because

they don’t have the same effect on both 4
√

2 and i, which generate the field extension).

σ id r r2 r3 s rs r2s r3s

σ( 4
√

2) 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2
σ(i) i i i i −i −i −i −i

Table 2.

A calculation at 4
√

2 and i shows r4 = id, s2 = id, and rs = sr−1, so Gal(Q( 4
√

2, i)/Q) is
isomorphic (not equal, just isomorphic!) to D4, where D4 can be viewed as the 8 symmetries
of the square whose vertices are the four complex roots of X4−2: r is rotation by 90 degrees
counterclockwise and s is complex conjugation, which is a reflection across one diagonal of
this square. (Strictly speaking, r and s as automorphisms are only defined on Q( 4

√
2, i), not

on all complex numbers. While r looks like a rotation by 90 degrees on the four roots of
X4 − 2, it is not really a rotation on most elements of Q( 4

√
2), since r is not multiplication

by i everywhere. For example, r(1) is 1 rather than i, and r(i) is i rather than −1. The
function s, however, does coincide with complex conjugation on all of Q( 4

√
2, i).)

Since Q( 4
√

2, i) is a Galois extension of Q, the minimal polynomial over Q of each element
in Q( 4

√
2, i) splits completely over Q( 4

√
2, i). For example, let α = 4

√
2 +
√

2 + 1. The Q-
conjugates of α are found by applying Gal(Q( 4

√
2, i)/Q) to α and seeing what different

numbers come out. This amounts to replacing 4
√

2 in the expression for α by the 4 different

fourth roots of 2 and replacing
√

2 = 4
√

2
2

in the expression for α by the squares of those
respective fourth roots of 2. We obtain the list

4
√

2 +
√

2 + 1, i
4
√

2−
√

2 + 1, − 4
√

2 +
√

2 + 1, −i 4
√

2−
√

2 + 1.

Although Gal(Q( 4
√

2, i)/Q) has size 8, the Galois orbit of α only has size 4: each Q-conjugate
of α is the value of 2 different elements of the Galois group (complex conjugation s does
not change α, so every σ and σs have the same value at α). Therefore Q(α)/Q has degree
4. Since α ∈ Q( 4

√
2), so Q(α) ⊂ Q( 4

√
2), a degree comparison implies Q(α) = Q( 4

√
2).

The next theorem shows Galois extensions are ubiquitous, especially in characteristic 0.

Theorem 4.8. Every finite separable extension of a field can be enlarged to a finite Galois
extension of the field. In particular, every finite extension of a field with characteristic 0
can be enlarged to a finite Galois extension.

Proof. Write the extension as K(α1, . . . , αn)/K where each αi is separable over K. The
product of the different minimal polynomials for the αi’s is a separable polynomial in K[X].
Enlarging K(α1, . . . , αn) to a splitting field of this polynomial over K is a Galois extension
of K by Theorem 4.1. �

Example 4.9. The non-Galois extensions Q( 3
√

2)/Q and Q( 4
√

2)/Q live inside the Galois
extensions Q( 3

√
2, ω)/Q and Q( 4

√
2, i)/Q.
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Corollary 4.10. A finite inseparable extension can not be extended to a finite Galois ex-
tension.

Proof. Each element of a Galois extension is separable over the base field. �

In the remainder of this section we tabulate some properties of Galois extensions.

Theorem 4.11. If L/K is a finite Galois extension and L ⊃ F ⊃ K then L/F is a Galois
extension.

Proof. We will use the characterization of Galois extensions as separable normal extensions.
When L ⊃ F ⊃ K, separability and normality are both preserved in the passage from L/K
to L/F because the minimal polynomial over F of each element of L divides its minimal
polynomial over K. �

Remark 4.12. The bottom part of the tower F/K need not be Galois when L/K is, and
moreover if L/F and F/K are Galois the extension L/K need not be Galois. These are
illustrated by the two towers in the diagrams below.

L Q( 4
√

2, i)

2

Q( 4
√

2)

2

F Q( 4
√

2)

4

Q(
√

2)

2

K Q Q

In the tower on the right, each pair of successive field extensions is quadratic (and thus
Galois) but the overall extension Q( 4

√
2)/Q is not Galois. We have to enlarge Q( 4

√
2)

further to Q( 4
√

2, i) to get a Galois extension of the base field K = Q.
It is an important issue to decide when an intermediate field is Galois over the base. We

will do that as part of the fundamental theorem of Galois theory in Section 5.

Theorem 4.13. If L1 and L2 are finite Galois extensions of K inside a common field then
L1L2 and L1 ∩ L2 are both finite Galois extensions of K.

Proof. By Theorem 4.1, L1 and L2 are both splitting fields for a separable polynomial in
K[X]. Then L1L2 is a splitting field for the product of the two polynomials with common
factors used only once. This polynomial is separable, so L1L2/K is Galois.

L1L2

L1 L2

L1 ∩ L2

K
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To show L1 ∩ L2 is Galois over K we take the viewpoint that Galois extensions are
separable normal extensions. Every element of L1 is separable over K, so the subfield
L1 ∩ L2 is separable over K. To show L1 ∩ L2 is normal over K, pick α ∈ L1 ∩ L2. It has
a full set of K-conjugates in L1 and in L2 since each of these are normal extensions of K.
These two sets of K-conjugates are the same, since otherwise the minimal polynomial of
α in K[X] has more roots in L1L2 than its degree. Therefore the K-conjugates of α lie in
L1 ∩ L2. �

The property LAut(L/K) = K characterizes Galois extensions of K among the finite
extensions of K, by Theorem 4.1. But there are many field extensions L/K of infinite

degree where LAut(L/K) = K. First there are infinite Galois extensions of K. There are
also transcendental (i.e., non-algebraic) extensions of K with this property. An example
is a rational function field L = K(u). It can be shown that the group Aut(K(u)/K)
consists of all linear-fractional substitutions f(u) 7→ f((au + b)/(cu + d)) where ( a bc d ) ∈
GL2(K). (Scaling a, b, c, d by a common λ ∈ K× defines the same substitution, so the group
Aut(K(u)/K) is isomorphic to GL2(K)/K× rather than to GL2(K).) Further examples of
this situation arise in algebraic geometry.

5. The fundamental theorem

So far we have looked at the passage from a finite extension field L/K to the finite group
Aut(L/K). When L is a splitting field over K of a polynomial in K[X] then |Aut(L/K)| ≤
[L : K] (Corollary 3.6). Now we go the other way, from a group of automorphisms of a field
to field extension. Let E be a field and H be a finite group of automorphisms of E. Then

EH = {x ∈ E : σ(x) = x for all σ ∈ H}
is a subfield of E.

Example 5.1. Let E = C and H = {id, c}, where c(z) = z is complex-conjugation. Then
EH = R.

Theorem 5.2 (Artin). Let E be a field and H be a finite group of automorphisms of E. If
[E : EH ] is finite then E/EH is a Galois extension and Gal(E/EH) = H.

Proof. First we show E/EH is a separable extension, by an idea already used in the proof
of Theorem 3.13. Pick α ∈ E. Let the finite set {σ(α) : σ ∈ H} be listed according to its
distinct elements as

{σ1(α), . . . , σm(α)}.
Clearly α is a root of hα(X) =

∏m
i=1(X − σi(α)), and the roots of this polynomial are

distinct and all lie in E. The degree of hα(X) is m ≤ |H|. The coefficients of hα(X) all
lie in EH by the same reasoning used in the proof of Theorem 3.13 to show hα(X) there

has coefficients in LAut(L/K), so E/EH is an algebraic extension that is separable over EH

(that is, every element of E has a minimal polynomial in EH [X] that is separable) and each
α ∈ E has degree at most |H| over EH .

So far we have not used the hypothesis that [E : EH ] is finite. Now we do. Since E/EH

is a finite separable extension of degree at most |H|, by the primitive element theorem
E = EH(α) for some α, so [E : EH ] = [EH(α) : EH ] ≤ deg hα(X) ≤ |H|. Since hα(X) splits
over E, E/EH is a Galois extension (Theorem 4.1d), so |Gal(E/EH)| = [E : EH ] ≤ |H|.
Since H is a subgroup of Gal(E/EH), |H| ≤ |Gal(E/EH)|, so we get equality throughout:

|Gal(E/EH)| = [E : EH ] = |H|.
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Thus Gal(E/EH) = H. �

The finiteness hypothesis on [E : EH ] in Theorem 5.2 is actually automatic.

Theorem 5.3 (Artin). Let E be a field and H be a finite group of automorphisms of E.
The extension E/EH is finite.

Proof. From the first part of the proof of Theorem 5.2, where finiteness of [E : EH ] is not
used, every element of E is separable over EH with bounded degree (at most |H|), so there
is an α ∈ E such that [EH(α) : EH ] is maximal. We are going to show E = EH(α). For
β ∈ E, EH(α) ⊂ EH(α, β) ⊂ E. Since EH(α, β) is a finite separable extension of EH ,
by the primitive element theorem EH(α, β) = EH(γ) for some γ. Then [EH(α) : EH ] ≤
[EH(γ) : EH ], and this inequality must be an equality because of the maximality defining
[EH(α) : EH ]. Hence EH(α) = EH(α, β) (one field is inside the other and they have the
same degree over EH), which implies β ∈ EH(α). This holds for all β ∈ E, so E = EH(α).
Therefore [E : EH ] = [EH(α) : EH ] <∞. �

We will use Theorem 5.2 once: in the proof of Theorem 5.6. Finiteness of [E : EH ] in
that application will be known in advance, so Theorem 5.3 is not needed in our development
of Galois theory. (However, it is useful to understand some examples in Galois theory.)

Remark 5.4. The proof of Theorem 5.3 showed: if E/F is separable and every element of E
has bounded degree over F then [E : F ] <∞. This can fail if E/F is inseparable. Consider

E = Fp(u
1/p
1 , u

1/p
2 , . . . ), with independent indeterminates u1, u2, . . . , as an extension of F =

Fp(u1, u2, . . . ). We have [E : F ] = ∞, but every α ∈ E satisfies αp ∈ F , so [F (α) : F ] ≤ p
for all α ∈ E.

Remark 5.5. The proof of Theorems 5.2 and 5.3 in [1, pp. 569–571] and [3, pp. 220-222]
is different from the one here (which is based on [2, pp. 263-264]). The proofs in [1] and [3]
involve solving systems of linear equations.

Here is the fundamental theorem of Galois theory. Galois discovered the concept of
normal subgroups from their role in the last part of the theorem.

Theorem 5.6 (Galois). Let L/K be a finite Galois extension with G = Gal(L/K). Then
the inclusion-reversing mappings F ; Gal(L/F ) and H ; LH between the intermediate
fields between K and L and the subgroups of G are inverses of each other and satisfy the
following properties when F and H correspond (F = LH , H = Gal(L/F )):

(a) |H| = [L : F ] and [F : K] = [G : H],
(b) two intermediate fields F and F ′, with corresponding subgroups H and H ′, are iso-

morphic over K if and only if H and H ′ are conjugate subgroups of G; in particular,
Gal(L/σ(F )) = σGal(L/F )σ−1 for σ ∈ G,

(c) F/K is Galois if and only if H � G, in which case the restriction map G →
Gal(F/K), where σ 7→ σ|F , is surjective with kernel H, so G/H ∼= Gal(F/K).

In (5.1) we indicate the relations of part a in a diagram, where F = LH and H =
Gal(L/F ) correspond to each other. Because inclusion relations are reversed, the group
diagram appears upside-down, with the larger subgroups near the bottom (having a fixed
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field that is closer to K).

(5.1)

L {1}∣∣∣ ∣∣∣[L:F ]

F H∣∣∣ ∣∣∣[F :K]

K G

Part c explains why normal field extensions get their name: in the context of a finite
Galois extension L/K, where every intermediate field is separable over the base field, the
intermediate fields that are normal (equivalently, Galois) over the base are those whose
corresponding subgroups in Gal(L/K) are normal subgroups.

Proof. First we check the correspondences are inverses: going from fields to subgroups to
fields, we need FGal(L/F ) = F , and going from subgroups to fields to subgroups requires
Gal(L/LH) = H. The first equality follows from Theorems 4.1 and 4.11 (L/F is Galois)
and the second equality comes from Theorem 5.2. (We know in advance that L/LH is finite
since K ⊂ LH ⊂ L and [L : K] <∞.)

For (a), since F and H correspond we have F = LH , so |H| = [L : F ] by Theorem 5.2.
The other equality in (a) follows from this: [G : H] = |G|/|H| = [L : K]/[L : F ] = [F : K].

For (b), first observe that intermediate fields F and F ′ are K-isomorphic if and only
if F ′ = σ(F ) for some σ ∈ G. Indeed, if F ′ = σ(F ) for some σ ∈ G then σ is a K-
isomorphism from F to F ′. Conversely, if F and F ′ are K-isomorphic let ϕ : F → F ′ be
a K-isomorphism. We will show ϕ, which is defined on F , is the restriction to F of some
σ ∈ G. By the primitive element theorem, F = K(γ) for some γ. Since ϕ fixes K, ϕ(γ)
has the same minimal polynomial over K as γ, so γ and ϕ(γ) have the same degree over
K. Since ϕ(γ) is a K-conjugate of γ in L, by Theorem 3.13 there is a σ ∈ G such that
ϕ(γ) = σ(γ). Since σ and ϕ agree on K and on γ, they agree on K(γ) = F . That proves
σ|F = ϕ, so F ′ = ϕ(F ) = σ(F ). Let’s look at an example to see what this is saying.

Example 5.7. For the extension Q( 4
√

2, i)/Q, whose Galois group was worked out in Ex-
ample 4.7, the intermediate fields Q( 4

√
2) and Q(i 4

√
2) are isomorphic over Q since each is

the adjuncation to Q of one root of X4−2. There is a Q-isomorphism ϕ : Q( 4
√

2)→ Q(i 4
√

2)
where ϕ( 4

√
2) = i 4

√
2. Some σ ∈ Gal(Q( 4

√
2, i)/Q) restricts to ϕ on Q( 4

√
2). What is it?

Using the notation of Example 4.7, r( 4
√

2) = i 4
√

2, so r is one choice for σ. Another choice
is rs, since rs( 4

√
2) = r( 4

√
2) = i 4

√
2.

Returning to the proof of Theorem 5.6b, write a K-isomorphic copy of F in L as σ(F )
for some σ ∈ G. For all τ ∈ G,

τ ∈ Gal(L/σ(F )) ⇐⇒ τ(σ(α)) = σ(α) for all α ∈ F,
⇐⇒ σ−1τσ(α) = α for all α ∈ F,
⇐⇒ σ−1τσ ∈ Gal(L/F ) = H

⇐⇒ τ ∈ σHσ−1,
so Gal(L/σ(F )) = σHσ−1 = σGal(L/F )σ−1.

To prove (c), note that an intermediate extension F/K is automatically separable since
every element of a Galois extension is separable over the base field K. Therefore F/K
is Galois if and only if F/K is normal. Since F is inside the Galois extension L/K, the
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K-conjugates of each element of F are its orbit under Gal(L/K) (Theorem 3.13). Therefore
F/K is normal if and only if σ(F ) ⊂ F for all σ ∈ G. Since σ(F ) and F have the same
degree over K, the inclusion σ(F ) ⊂ F is the same as σ(F ) = F . Therefore

F/K is normal ⇐⇒ σ(F ) = F for all σ ∈ G
⇐⇒ σHσ−1 = H for all σ ∈ G
⇐⇒ H �G.

Restricting elements in Gal(L/K) to F defines a map Gal(L/K) → Gal(F/K) that is
a group homomorphism (check). Its kernel is Gal(L/F ) = H, so we get an embedding
G/H ↪→ Gal(F/K). The size of G/H is [G : H] = [F : K], which equals |Gal(F/K)| since
F/K is Galois. So G/H ∼= Gal(F/K). �

The bijection in Theorem 5.6 is called the Galois correspondence. Only for finite Galois
extensions does it hold. Why? Because the special case LAut(L/K) = K of the correspon-
dence is a property in Theorem 4.1 characterizing Galois extensions among finite extensions.

Example 5.8. The extension Q( 3
√

2, ω)/Q has Galois group isomorphic to S3 (Example
4.6). This group has 3 subgroups of order 2 and one subgroup (just A3) of order 3. In the
diagram we have indicated the indices in S3 of subgroups.

S3

A3

2

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3

{(1)}

Let’s flip this upside down, so larger groups are on the bottom.

{(1)}

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3
A3

2

S3
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By the Galois correspondence, the arrangement of subfields of Q( 3
√

2, ω) looks the same,
with indices of a subgroup in the Galois group turning into degrees of a subfield over Q.

Q( 3
√

2, ω)

?

3

?

3

?

3
?

2

Q

So there is one quadratic subfield and three cubic subfields. It is easy to write down enough
such fields by inspection: Q(ω) is quadratic and Q( 3

√
2), Q(ω 3

√
2), and Q(ω2 3

√
2) are all

cubic. (These three cubic fields are distinct since two different cube roots of 2 can’t lie
in the same cubic field.) So these are the only (proper) intermediate fields, and the field
diagram looks like this:

Q( 3
√

2, ω)

Q( 3
√

2)

3

Q(ω 3
√

2)

3

Q(ω2 3
√

2)

3
Q(ω)

2

Q

The subgroups of S3 with order 2 are not normal, and likewise the cubic fields are not Galois
over Q. The subgroup A3 is normal, and the quadratic field Q(ω) is Galois over Q.

We were somewhat cavalier about the way we just wrote down the cubic fields without
really paying attention to which ones should correspond to which subgroups of index 3
(order 2) in the Galois group. But we can’t be more careful at this stage (beyond keeping
track of indices of subgroups and degrees of subfields) because we didn’t really keep track
here of how Gal(Q( 3

√
2, ω)/Q) is isomorphic to S3. We simply used the subgroup structure

of S3 to figure out the subfield structure of Q( 3
√

2, ω). If we want to match specific subgroups
with specific subfields through the Galois correspondence, we have to think about S3 as the
Galois group in a definite way. There are three roots of X3 − 2 being permuted by the
Galois group (in all 6 possible ways), so if we label the roots abstractly as 1, 2, and 3 then
we can see what the correspondence should be. Label 3

√
2 as 1, ω 3

√
2 as 2, and ω2 3

√
2 as 3.

Then (12) fixes ω2 3
√

2, and therefore Q(ω2 3
√

2) is contained in the fixed field Q( 3
√

2, ω)〈(12)〉.
The subgroup 〈(12)〉 has index 3 and Q(ω2 3

√
2)/Q has degree 3, so Q(ω2 3

√
2) is the full

fixed field of 〈(12)〉. In a similar way, 〈(13)〉 has fixed field Q(ω 3
√

2) and 〈(23)〉 has fixed
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field Q( 3
√

2). So the subgroup and subfield diagrams are aligned if we draw them as follows:

{(1)}

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3
A3

2

S3

Q( 3
√

2, ω)

Q(ω2 3
√

2)

3

Q(ω 3
√

2)

3

Q( 3
√

2)

3
Q(ω)

2

Q

Example 5.9. The extension Q( 4
√

2, i)/Q has Galois group isomorphic to D4 according to
the permutations that the Galois group induces on the fourth roots of 2. Generators are r
and s where r( 4

√
2) = i 4

√
2, r(i) = i and s( 4

√
2) = 4

√
2, s(i) = −i (s is complex conjugation).

See Table 2 in Example 4.7.
Below is the diagram of all subgroups of D4, written upside down.

{id}

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

〈r2, s〉 〈r〉 〈r2, rs〉

D4



THE GALOIS CORRESPONDENCE 23

All indices of successive subgroups here are 2, so we don’t include that information in the
diagram. The lattice of intermediate fields in Q( 4

√
2, i)/Q looks the same:

Q( 4
√

2, i)

Q( 4
√

2) Q(i 4
√

2) Q(
√

2, i) ? ?

Q(
√

2) Q(i) Q(i
√

2)

Q

To check the fields have been placed correctly according to the Galois correspondence H ;

Q( 4
√

2, i)H , verify in each case that each field in the field diagram is fixed by the subgroup
in the same relative position in the subgroup diagram, and the degree of the field over Q
equals the index of the subgroup over Q: if F ⊂ Q( 4

√
2, i)H and [F : Q] = [D4 : H] then

F = Q( 4
√

2, i)H .
As an example, the subextension Q(i)/Q has degree 2, so its corresponding subgroup H

in D4 has index 2. Since r(i) = i, 〈r〉 is a subgroup fixing i with index 8/4 = 2, so H = 〈r〉.
Thus Q(i) corresponds to 〈r〉. Since Q(i) is Galois over Q, the restriction of an auto-
morphism of Q( 4

√
2, i)/Q to Q(i)/Q gives us a homomorphism D4 = Gal(Q( 4

√
2, i)/Q) →

Gal(Q(i)/Q) that is surjective and its kernel is the subgroup fixing Q(i), namely 〈r〉. So
D4/〈r〉 ∼= Gal(Q(i)/Q). This isomorphism with the quotient group makes sense: every ele-
ment of D4 is some rk or rks, so modulo 〈r〉 every element of D4 is 1 or s, and this is what
we usually think of as the Galois group of Q(i)/Q: the identity and complex conjugation.

In D4 there is only one normal subgroup of index 4, namely 〈r2〉 = {1, r2}. Therefore
there is only one field inside Q( 4

√
2, i) of degree 4 over Q that is Galois over Q. Since

Q(
√

2, i) is such a field, that is the field corresponding to 〈r2〉.
We have left two fields undetermined in the field diagram. They correspond to the

subgroups 〈rs〉 and 〈r3s〉 and must have degree 4 over Q. The smallest subgroup properly
containing either of these is 〈r2, rs〉, so we can figure out the undetermined fields by looking
for an α ∈ Q( 4

√
2, i) of degree 4 over Q that is fixed by rs and not by r2, and likewise find

β of degree 4 over Q that is fixed by r3s and not by r2. Then the two missing fields are
Q(α) and Q(β).

To find α, rather than blind guessing we write out a general element of Q( 4
√

2, i) in a
basis over Q and see what the condition rs(α) = α means about the coefficients. Writing

α = a+ b
4
√

2 + c
√

2 + d
4
√

2
3

+ ei+ fi
4
√

2 + gi
√

2 + hi
4
√

2
3
,

with rational coefficients a, b, c, d, e, f, g, h, applying rs to all terms gives

rs(α) = a+ bi
4
√

2− c
√

2− di 4
√

2
3 − ei+ f

4
√

2 + gi
√

2− h 4
√

2
3
,

so
b = f, c = −c, e = −e, d = −h.

Therefore

α = a+ b(
4
√

2 + i
4
√

2) + d(
4
√

2
3 − i 4

√
2
3
) + gi

√
2.
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The 4 coefficients a, b, d, g can be arbitrary in Q, so we have found a Q-basis of the field
fixed by 〈rs〉. To pick something simple of degree 4, we try b = 1 and the other coefficients
equal to 0:

α =
4
√

2 + i
4
√

2 = (1 + i)
4
√

2.

Easily r2(α) = −α, so α is fixed by 〈rs〉 but not by 〈r2〉, which means the field Q(α) is
inside the fixed field of 〈rs〉 but not inside the fixed field of 〈r2〉, so Q(α) must be the fixed
field of 〈rs〉. The difference β = 4

√
2− i 4

√
2 is fixed by r3s and not by r2, so the fixed field

of 〈r3s〉 is (1− i) 4
√

2. Now we have a complete field diagram.

Q( 4
√

2, i)

Q( 4
√

2) Q(i 4
√

2) Q(
√

2, i) Q((1 + i) 4
√

2) Q((1− i) 4
√

2)

Q(
√

2) Q(i) Q(i
√

2)

Q

Example 5.10. Let ζ8 = e2πi/8 be a root of unity of order 8. The field Q(ζ8) is Galois over
Q, being the splitting field of X8− 1. We will use the Galois correspondence to find all the
fields between Q and Q(ζ8).

Since ζ8 is a root of (X8−1)/(X4−1) = X4+1 and (X+1)4+1 = X4+4X3+6X2+4X+2
is Eisenstein at 2, so irreducible over Q, X4 + 1 is the minimal polynomial of ζ8 over Q.
Therefore the Galois group Gal(Q(ζ8)/Q) has order 4, which means it is either a cyclic
group or a product of two groups of order 2. Which group is it?

The two nonisomorphic groups of order 4 are distinguishable from each other by the
number of subgroups of order 2. If H is a subgroup of order 2 in the Galois group, with
fixed field F , then [Q(ζ8) : F ] = 2, so [F : Q] = 4/2 = 2. Therefore if Gal(Q(ζ8)/Q) is
cyclic there is one quadratic field in Q(ζ8), while in the other case there are three.

Q(ζ8)

Q(
√

2) Q(i) Q(
√
−2)

Q

In the field diagram above, we list three quadratic subfields, so Gal(Q(ζ8)/Q) is a product
of two groups of order 2 and the fields we found are the full list of them. We find i inside
Q(ζ8) since i = ζ28 . We find

√
2 in Q(ζ8) from the complex representation ζ8 = e2πi/8 =

eπi/4 = 1+i√
2

, which implies

ζ8 + ζ−18 =
1 + i√

2
+

1− i√
2

=
√

2.
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Then
√
−2 = i

√
2 is also in Q(ζ8).

Example 5.11. Let F be a field and T1, . . . , Tn be indeterminates over F . The Ti’s are
roots of the polynomial

(5.2) (X − T1)(X − T2) · · · (X − Tn) = Xn − s1Xn−1 + s2X
n−2 − · · ·+ (−1)nsn,

where

sk =
∑

1≤i1<···<ik≤n
Ti1 · · ·Tik

is the sum of the products of the Ti’s taken k at a time. When Sn acts on the field L :=
F (T1, . . . , Tn) by permutations of the variables Ti, different permutations in Sn permute the
variables in different ways. The fixed field LSn consists of the symmetric rational functions:
those that are unchanged by all permutations of the variables T1, . . . , Tn. The sk’s are
symmetric, so F (s1, . . . , sn) ⊂ LSn . We will use Galois theory to show equality occurs here.
(This can be done without Galois theory too.)

Let K = F (s1, . . . , sn), so K ⊂ LSn ⊂ L. Thus [L : K] ≥ [L : LSn ] = |Sn| = n!. At
the same time, the Ti’s are all roots of the same degree n polynomial (5.2) in K[X], so
L/K is a splitting field of a polynomial of degree n, which means [L : K] ≤ n!. Hence
[L : K] = n! = [L : LSn ], which forces LSn = K: every symmetric rational function in
T1, . . . , Tn over F is a rational function of the elementary symmetric functions s1, . . . , sn.

Here are two theorems that follow from the Galois correspondence.

Theorem 5.12. Let L/K be a finite Galois extension and F and F ′ be K-isomorphic
intermediate fields corresponding to H and H ′ in Gal(L/K). The K-isomorphisms from F
to F ′ in Gal(L/K) are the restrictions σ|F where σ ∈ Gal(L/K) satisfies σHσ−1 = H ′.

Proof. In the proof of Theorem 5.6b, we showed every K-isomorphism ϕ : F → F ′ can be
extended to some σ ∈ Gal(L/K) such that σHσ−1 = H ′. Then ϕ = σ|F .

Conversely, for all σ ∈ Gal(L/K) we have σHσ−1 = Gal(L/σ(F )), so σHσ−1 = H ′ if
and only if Gal(L/σ(F )) = Gal(L/F ′), which is equivalent to F ′ = σ(F ) by the Galois
correspondence. �

Theorem 5.12 says σ conjugates H to H ′ if and only if it maps F to F ′, which should be
simple to remember.

Theorem 5.13. Let L/K be finite Galois and F and F ′ be intermediate fields with corre-
sponding subgroups H and H ′.

(a) Gal(L/FF ′) = H ∩ H ′ and Gal(L/F ∩ F ′) = 〈H,H ′〉, where 〈H,H ′〉 denotes the
subgroup of Gal(L/K) generated by H and H ′.

(b) F ⊂ F ′ if and only if H ′ ⊂ H, in which case [F ′ : F ] = [H : H ′].

Proof. For (a), we use the inclusion-reversing nature of the Galois correspondence. The
composite field FF ′ is the smallest field containing both F and F ′ in L, so its corresponding
subgroup Gal(L/FF ′) is the largest subgroup of Gal(L/K) contained in H and H ′, so it is
H ∩H ′. The argument for the other equation is similar.

For (b), the equivalence of the inclusions comes from the Galois correspondence. More-
over, we then have [F ′ : F ] = [L : F ]/[L : F ′] = |H|/|H ′| = [H : H ′]. �



26 KEITH CONRAD

6. Primitive Elements

Galois theory provides a method to prove a number is a primitive element in a Galois
extension.

Theorem 6.1. When L/K is a finite Galois extension and γ ∈ L, the degree [K(γ) : K]
is the size of the Galois orbit of γ. In particular, γ is a primitive element for L/K if and
only if |{σ(γ) : σ ∈ Gal(L/K)}| = [L : K].

Proof. Since γ is separable over K, [K(γ) : K] is the number of roots of the minimal
polynomial of γ over K, and these roots are all in L since L/K is Galois. From Galois
theory, the roots of the minimal polynomial of γ over K are the orbit of γ under Gal(L/K).
To say L = K(γ) is equivalent to saying Gal(L/K) takes γ through as many elements as
the degree [L : K] = |Gal(L/K)|. �

Example 6.2. In Q( 4
√

2, i)/Q, 4
√

2 + i has 8 different values under the Galois group (see
Table 3), since i, 4

√
2, and i 4

√
2 are linearly independent over Q. (They are part of a Q-basis

for the field extension.) Thus Q( 4
√

2, i) = Q( 4
√

2 + i).

σ σ( 4
√

2) σ(i) σ( 4
√

2 + i)

1 4
√

2 i 4
√

2 + i

r i 4
√

2 i i 4
√

2 + i

r2 − 4
√

2 i − 4
√

2 + i

r3 −i 4
√

2 i −i 4
√

2 + i

s 4
√

2 −i 4
√

2− i
rs i 4

√
2 −i i 4

√
2− i

r2s − 4
√

2 −i − 4
√

2− i
r3s −i 4

√
2 −i −i 4

√
2− i

Table 3.

On the other hand, 4
√

2 + i 4
√

2 is not a primitive element for Q( 4
√

2, i)/Q since its Galois
orbit has fewer than 8 values. There are 4 values, each arising twice in Table 4.

σ σ( 4
√

2) σ(i) σ( 4
√

2 + i 4
√

2)

1 4
√

2 i 4
√

2 + i 4
√

2

r i 4
√

2 i i 4
√

2− 4
√

2

r2 − 4
√

2 i − 4
√

2− i 4
√

2

r3 −i 4
√

2 i −i 4
√

2 + 4
√

2

s 4
√

2 −i 4
√

2− i 4
√

2

rs i 4
√

2 −i i 4
√

2 + 4
√

2

r2s − 4
√

2 −i − 4
√

2 + i 4
√

2

r3s −i 4
√

2 −i −i 4
√

2− 4
√

2
Table 4.

Table 4 tells us 4
√

2+i 4
√

2 has degree 4 over Q. We directly find a fourth degree polynomial
over Q with 4

√
2+i 4
√

2 as a root: setting α = 4
√

2+i 4
√

2 = (1+i) 4
√

2, α2 = 2i
√

2, so α4 = −8.
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Thus 4
√

2 + i 4
√

2 is a root of X4 + 8. This must be the minimal polynomial of 4
√

2 + i 4
√

2
over Q, since we know this number has degree 4 over Q. In particular, X4 + 8 is irreducible
over Q.

Example 6.3. Let F be a field and T1, . . . , Tn be indeterminates over F . Let L =
F (T1, . . . , Tn), on which Sn acts by permutations of T1, . . . , Tn. From Example 5.11, the
fixed field for Sn is K = F (s1, . . . , sn), where the si’s are the elementary symmetric poly-
nomials in the Ti’s.

The extension L/K must have a primitive element, and here is an explicit choice:
T1T

2
2 · · ·Tnn . To show this works, we take our cue from Theorem 6.1 and look at the

Sn-orbit. For all σ ∈ Sn,

σ(T1T
2
2 · · ·Tnn ) = Tσ(1)T

2
σ(2) · · ·T

n
σ(n).

If σ(T1T
2
2 · · ·Tnn ) = τ(T1T

2
2 · · ·Tnn ) then Tσ(1)T

2
σ(2) · · ·T

n
σ(n) = Tτ(1)T

2
τ(2) · · ·T

n
τ(n), so by com-

paring variables with the same exponent on both sides, we have σ(1) = τ(1), . . . , σ(n) =
τ(n), so σ = τ . Therefore the Sn-orbit of T1T

2
2 · · ·Tnn has size n! = [L : K], so T1T

2
2 · · ·Tnn

is a primitive element of L/K.
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