
Joyal's Proof of Cayley's Formula

Gyu Eun Lee and Doron Zeilberger

July 16, 2012

1 Abstract.

We introduce labeled trees via examples and ask how many of them exist on n vertices. The result,
called Cayley's Formula, has a beautifully simple form. We give a combinatorial proof of Cayley's
Formula �rst provided by André Joyal in his seminal article, that laid the foundation to the theory
of species, given in

A. Joyal, Une théorie combinatoire des séries formelles, Advances in Mathematics 42 (1981),
1-82.

2 Building roads between cities.

Suppose we are civil engineers and are given the task of connecting n cities via roads. For this
particular scenario, the names of the cities matter. By this is meant that if we need to connect New
York, Boston, and Philadelphia via roads, then one possible con�guration is a road from New York
to Boston and a road from Boston to Philadelphia. Another possible con�guration is a road from
New York to Philadelphia and a road from Philadelphia to Boston. These two con�gurations are
considered distinct.
This seems perfectly obvious, but it is an important distinction because the problem translates
quite naturally into a graph theoretic problem. If we consider the cities to be vertices and roads
between them to be edges, then the distinction between labeled cities and unlabeled cities becomes
quite clear. In graph theory, the locations of the vertices in the plane are irrelevant, as a graph is
characterized completely by its vertices and edges. (We are referring to regular elementary graph
theory; some aspects of graph theory deal with embeddings of graphs on nonplanar surfaces.) Hence
in an unlabeled, undirected graph with 3 vertices, any con�guration with 2 edges is equivalent to
any other con�guration with 2 edges. If the graph is labeled, say the vertices are called 1, 2, 3, then
an edge between 1 and 2 is distinct from an edge between 2 and 3.
Returning to our problem of connecting cities via roads, we are asked to connect the cities so that
there is a way to reach any city starting at any city. In graph theoretic terminology, we are asked to
�nd a connected graph on n vertices. One way that comes to mind is to build a road between every
pair of cities. To do this, we need to build

(
n
2

)
roads, which grows O(n2). This is a valid but very

expensive solution: for 100 cities we are looking at building 4950 roads. (Also, at least two roads
are guaranteed to intersect each other, since K5 is nonplanar. This may prove a further hassle for
highway engineers.)
Is there a simpler way? Of course! For n = 4 we can get away with 3 roads. Call the cities
A,B, C, D. We can build a road from A to B, then from B to C, then from C to D. A resident of
A who has relatives in D isn't going to be particularly happy with this con�guration, but the fact
remains that going from A to D is at least possible via our roads.

1



In fact for n cities, n − 1 roads will su�ce to connect all the cities. The procedure to do so is
clear from the case of n = 4, and we will provide a proof shortly. Of course, you may have noticed
that not all con�gurations of n − 1 roads will connect n cities: take n = 5, and call the cities
A,B, C, D, E. Build a road between A and B, B and C, C and A, and D and E. Then there is
no way to get from any of A,B, C to any of D,E. But if we build our roads carefully, then 4 roads
will certainly su�ce: build the roads (excuse the shorthand) AB, BC, CD, and DE.

Proposition 1. The smallest number of roads required to connect n cities is n− 1.

Proof. We proceed by induction on n. For n = 1 we have 1 city, and we don't need to build
any roads since we only have 1 city. Now suppose n − 1 roads su�ce for n cities. Build such a
con�guration for n cities, and add one more city A. We simply have to build a road between A and
any one of the other cities, and it is connected to all of them since the other cities are all connected.
Hence n roads su�ce for n + 1 cities, and the claim is proved.

3 Labeled trees.

In graph theory, a connected undirected graph on n vertices with n− 1 edges like in our example is
called a labeled tree, also known as a minimally connected graph for clear reasons. A tree is simply
a connected graph that contains no cycles: starting at a vertex and following edges, it is impossible
to return to the original vertex without repeating an edge.
Since we are learning combinatorics, a good question to ask might be: how many distinct labeled
trees can we build on n vertices? By distinct labeled trees we mean this: consider the labeled trees
on the 3 vertices A,B, C. One labeled tree, given by its edges, is {AB,BC}. Another, considered
distinct from the �rst, is {AC,BC}. If we were considering unlabeled trees, then these two trees
would be considered equivalent. Unlabeled trees on n vertices are considered equivalent whenever
they can be put into the same shape, sort of like the idea of isomorphic labeled graphs.
Let us denote by un denote the number of unlabeled trees on n vertices, and by an the number of
labeled trees on n vertices,.

n un an

1 1 1
2 1 1
3 1 3
4 2 16
5 3 125

You may verify these values yourself. A pattern is beginning to emerge for an: note that each value
of an factorizes into some power. Even more explicitly, a1 = 1 = 1−1, a2 = 1 = 20, a3 = 3 = 31,
a4 = 16 = 42, a5 = 125 = 53. It's an unexpectedly simple pattern! (Those of you that veri�ed the
values of an by counting would probably agree.) We may even venture to guess a general formula
for an:

an = nn−2.

The formula happens to be true, and is named Cayley's Formula after Arthur Cayley, who wrote
about it in a note in 1889. The original result is due to Carl Wilhelm Borchardt, who discovered it
in 1860. It's a particularly beautiful formula because of its simplicity and unexpectedness: rarely
in combinatorics do we get such a simple formula for a nontrivial problem, and if you veri�ed the
values of an by hand you would certainly agree that this equation is not obvious.1 As it turns out,

1The same problem for undirected graphs is unresolved, even though un is certainly much smaller than an.

2



there is a very elegant combinatorial proof given by André Joyal in 1980 for this formula, and the
rest of this transcription will be dedicated to explaining it. First, however, we need to make an
apparent digression, and discuss the representation of permutations.

4 Representing permutations.

We are all familiar with the idea of permutations: given a set {1, 2, ..., n}, a permutation of the n
elements of this set is some sequence of all n elements in some order. What we may be less familiar
with is the variety of ways to represent a permutation.

4.1 One-line notation.

The most familiar representation of a permutation is probably one-line notation. To illustrate, take
the set {1, 2, 3, 4}. The permutations of this set in one-line notation are 1234, 1243, 1324,
1342, . . . , 4312, 4321. The meaning of this notation is quite clear.

4.2 Two-line notation and decomposition into cyclic permutations.

In group theory, however, this notation is frequently abandoned in favor of two-line notation, because
permutations in group theory are studied as one-to-one functions from a set of n elements to itself
and two-line notation provides a clean way to represent compositions of permutations. To illustrate
two-line notation, let us take the permutation 3421 in one-line notation as an example. In two-line
notation, we write the original set in order on the �rst line, and the permutation of the set on the
second line, like so: (

1 2 3 4
3 4 1 2

)
.

The meaning of this notation is pretty intuitive. 1 is swapped with 3, 2 is swapped with 4, 3 is
swapped with 1, and 4 is swapped with 2. (Yes, the last two swaps were redundant; we'll get to
that later.) This is basically the same information as one-line notation, and so far doesn't seem to
o�er any advantages.
But as mentioned previously, the advantage of two-line notation is that it allows us to depict per-
mutations as compositions of functions, and here's how this is done. Taking the same permutation
as before, we now break it into a composition of cyclic permutations as follows: start at 1. 1 goes
to 3. 3 goes to 1, which is a repeat. So the �rst cyclic permutation is(

1 3
3 1

)
.

Now we move on to 2. 2 goes to 4. 4 goes to 2, which is a repeat. So the second cyclic permutation
is (

2 4
4 2

)
.

Having accounted for all numbers, we may represent our permutation as(
1 2 3 4
3 4 1 2

)
=

(
1 3
3 1

) (
2 4
4 2

)
.

The meaning of this is that the permutation on the left-hand side is a composition of two cyclic
permutations: swapping 1 and 3, followed by swapping 2 and 4. We often abbreviate this notation,

3



called cycle notation, by writing
(3412) = (13)(24).

The redundancy in our wordy explanation of two-line notation is now understandable as the result
of the permutation being a composition of 2-cycles. Using the �zig-zag� algorithm sketched in the
example, it should not be di�cult to verify that(

1 2 3 4 5 6 7 8 9
9 5 2 1 4 7 6 3 8

)
=

(
1 9 8 3 2 5 4
9 8 3 2 5 4 1

) (
6 7
7 6

)
.

One thing to keep in mind is that a permutation as de�ned in group theory is a one-to-one function
from the set {1, 2, . . . , n} to {1, 2, . . . , n}. It is a basic result in elementary group theory that
permutations can always be decomposed into compositions of cyclic permutations. A short argument
can be provided here: consider building a permutation from {1, 2, . . . , n} to {1, 2, . . . , n}. Then
every number must go to a di�erent number since a permutation is one-to-one. Suppose in our
permutation, n− 1 numbers are assigned without any cycles. Then no number goes to itself, so the
n-th number cannot go to itself, as it is already associated with a number. Then it is guaranteed to
go to one of the n − 1 remaining numbers. Starting at that number and performing our �zig-zag�
algorithm, we will eventually reach the n-th number and cycle back. (This is not a formal proof,
but the pigeonholing idea is carried over.)

4.3 Graph representations of functions and permutations.

That a permutation is a composition of cyclic permutations is important because we can represent
functions as graphs, and this property is re�ected in the structure of the graph of a permutation.
We are concerned with graphs of functions from {1, 2, . . . , n} to {1, 2, . . . , n}. We will describe the
process of drawing the graph of such functions via an example for n = 6. Suppose a function is
represented in two-line notation by (

1 2 3 4 5 6
2 1 4 2 3 6

)
(At this point we hope that the meaning of this notation, while unintroduced, is clear.) We will
represent this function as a directed graph on 5 vertices, labeled from 1 to 5. Draw the 5 vertices
and label them. Since 1 goes to 2, draw a directed edge from 1 to 2. Since 2 goes to 1, draw a
directed edge from 2 to 1. Continue this process for all vertices, and our set of directed edges will be
{12, 21, 34, 42, 53, 66}. Note that 6 points to itself. This algorithm can be extended to all functions
on {1, 2, . . . , n}. One thing to notice about this graph is that every vertex has exactly one directed
edge coming out of it, i.e. every vertex has outdegree 1. Of course, from the de�nition of a function
this isn't at all surprising: every element in the domain of a function must associate with exactly
one element in its range.
Since the algorithm works for arbitrary functions, it works for permutations as well. Try applying
the algorithm to the permutations (

1 2 3 4
4 1 2 3

)
(1)(

1 2 3 4
1 2 3 4

)
(2)(

1 2 3 4 5 6
3 5 6 2 4 1

)
(3)

4



Notice anything? The graphs of these permutations are composed of collections of cycles. (1) is a
single 4-cycle, (2) is a collection of 4 1-cycles, and (3) is composed of 2 3-cycles. This shouldn't
be surprising at all, since we already saw that any permutation can be decomposed into cyclic
permutations, and it is easy to see that a cyclic permutation corresponds to a cycle in a directed
graph. (Try decomposing each of these permutations into cyclic permutations and compare the
results to the graphs.) As with arbitrary functions, the vertices in the graph of a permutation have
outdegree one; additionally, they have indegree 1 as well. (Why?)

5 Joyal's proof of Cayley's Formula

We are now equipped with all of the tools to prove Cayley's Formula via Joyal's ingenious combi-
natorial argument.

Theorem 2 (Cayley's Formula). The number of labeled trees on n vertices, denoted an, is given by

an = nn−2.

Proof. First we note that the formula given is equivalent to the formula n2an = nn. This is
useful because nn counts something very familiar: the number of functions from {1, 2, . . . , n} to
{1, 2, . . . , n}. (You may be more familiar with the idea of the number of permutations of n elements
with replacement.) Joyal's idea was to use the graph representation of functions to create a bijective
transformation between functions and certain special types of graphs, which we describe here.
We observed that the graph of a function on {1, 2, . . . , n} is guaranteed to contain a cycle. We can
also observe that there is no directed path from one cycle in a graph to another: if there were, then
the outdegree of one of the vertices in the �rst cycle would be 2, but the outdegree of all vertices
must be 1, contradiction. Hence we can think of functions as collections of cycles with trees coming
out of the vertices in the cycles; better yet, we can think of them as cycles with the trees as the
vertices! (If a vertex has no tree coming out of it, think of it as the trivial tree with 0 vertices
coming out of it.) Now we are looking at functions as disconnected cycles of trees.
Now we ask what the number n2an counts. an counts the number of labeled trees on n vertices.
Suppose we pick 2 of the vertices, which may be the same vertex, and call them the roots. Then
there are n choices for the �rst root, and n choices for the second root (which may be the same
vertex as the �rst root). Hence n2an counts the number of doubly rooted labeled trees. Remember
that labeled trees are undirected graphs.
Now we seek to establish a bijection between the set of doubly rooted labeled trees on n vertices and
the set of functions on n elements. We do this by showing that we can transform every function into
to unique double rooted labeled tree, and every doubly rooted labeled tree into a unique function.
Joyal's algorithm goes as follows:
First we start with a function as the input. The following algorithm, illustrated via an example
function for n = 9, transforms this function into a doubly rooted labeled tree.(

1 2 3 4 5 6 7 8 9
1 1 5 7 6 3 8 7 4

)
Draw the graph representation of this function. Its set of directed edges will be {11, 21, 35, 47, 56,
63, 78, 87, 94}. As we observed previously, a function is a collection of cycles with trees as its
vertices. Ignoring vertices in trees, take just the vertices that are part of a cycle and arrange them
as a function: (

1 3 5 6 7 8
1 5 6 3 8 7

)

5



Pick the �rst and last correspondences to be the roots A and B. In this case A is 1 and B is 7.
Now build a new double rooted labeled tree with roots A and B as follows. Connect A and B via a
path going through the vertices in the second line. In this case, the path is 15− 56− 63− 38− 81.
This path is called the skeleton of the doubly rooted labeled tree. Now we reinstate the trees: add
every vertex in a tree from the original directed graph, and add the edges from these vertices to
the labeled tree, removing the directions. The set of undirected edges in our �nal graph should be
{12, 15, 38, 36, 47, 49, 56, 78}, and its roots are 1 and 7. Thus we have built a doubly rooted labeled
tree from a function on n elements.
We now do this in reverse. To illustrate that the transformation is invertible, we will perform it on
our newly created doubly rooted labeled tree, aiming to get back our original function as output.
Draw the graph of the doubly rooted labeled tree on {1, 2, ..., 9} with edges {12, 15, 38, 36, 47, 49, 56, 78}
and roots 1 and 7. Now, remember the skeleton from our �rst algorithm? It is the sequence of ver-
tices from one root to another - in this case, the edges 15− 56− 63− 38− 81, or equivalently the
sequence 1− 5− 6− 3− 8− 7. Now write this sequence of vertices in two-line notation, ordered on
the �rst line and as it stands on the second line. You should get the familiar-seeming permutation(

1 3 5 6 7 8
1 5 6 3 8 7

)
Now generate the graph of this permutation: draw a directed edge from 1 to 1, from 3 to 5, and so
on until all vertices are accounted for. This graph should start looking familiar: it is subgraph of our
original function containing just the cycles and without the trees. What remains is to reinstate the
trees: if vertex a is not part of the skeleton, it is part of a tree. Add all the vertices that are not in the
skeleton to the graph, and add the edges coming into and out of these vertices. If b is in the skeleton
and the undirected edge ab is in the doubly rooted labeled tree, add the directed edge from a to b
to the graph of our function. The property that every vertex has outdegree exactly 1 will determine
the rest of the edges. Our �nal set of directed edges will be {11, 21, 35, 47, 56, 63, 78, 87, 94}. From
this we can get back the function, which in two-line notation reads(

1 2 3 4 5 6 7 8 9
1 1 5 7 6 3 8 7 4

)
as desired. Hence our transformation is invertible and we have a bijective transformation from the
doubly rooted labeled trees on n vertices to the functions on n elements, meaning the sizes of these
two sets are equivalent. This proves the claim that n2an = nn, and the proof is complete.

6 Closing remarks.

The proof given was informal but can be easily made more formal, if desired. You may wish to try
the algorithm on many other functions and doubly rooted labeled trees. If you want to test your
mastery, try out the �quiz�

http://www.math.rutgers.edu/�zeilberg/AJ12q.pdf

and to check your answer
http://www.math.rutgers.edu/�zeilberg/AJ12.pdf

This paper was written by the �rst author, who transcribed (and improved) a guest lecture by
the second author at Brian Nakamura's Rutgers University Summer 2012 undergraduate class on
Combinatorics delivered on July 16, 2012.

[Added Aug. 17, 2012: we thank Octavio Agustin for corrections on an earlier version]

6


